PROGRESS

POCKET PROGRESS

Copyright© 1990 Progress Software Corporation
617-275-4500

PROGRESS is copyrighted and all rights are reserved by Progress Software Corporation. This manual is
copyrighted and all rights are reserved. This document may not, in whole or part, be copied, photocopied,
translated, or reduced to any electronic medium or machine readable form without prior consent, in writing,
from Progress Software Corporation.

The information in this manual is subject to change without notice and should not be construed as a
commitment by Progress Software Corporation. Progress Software Corporation assumes no responsibility for
any errors that may appear in this document.

PROGRESS® is a registered trademark of Progress Software Corporation.
Printed in U.S.A. December 1990

Product names are trademarks of their respective manufacturers.

CONTENTS

STARTING AND RUNNING PROGRESSciiiiiiiiiiiiiiiiiintttteccnnssnnnnnesss 1
VN N1 0] 1 (0) 3 13
12AY 0 T0)1011% 023018 MAVZN 23 72 51 1 42

THE PROGRESS KEYBOARDciiiiinunnneeeiiiinnnectcccsssnsnssssscccscsnnnans 49

KEYCODES AND KEY LABELScicvuiiiiiiiiiiinneeccnnnns ceeeeeas ceeeseans ... 59

THE PROGRESS LANGUAGE B P 67
PROGRESS SYNTAX RULESttt ettt et e e e e e 68

PROGRESS SYNTAX SUMMARYttt ittt it e ittt ciie e 70

OPERATOR PRECEDENCE TABLE ittt it iiiiieenennn, 182

DATA FORMATS i i i it ittttieeteeeeeennnnannacsnsnnnanns 183
NUMERIC FORMAT .. i ittt tetttaneaeaceannnnannns 185
TIME FORMAT (Used with the STRING Function)cvuiiiiiiiiiiiiiiiiiieennn. 185
DATA HANDLING STATEMENTS AND DATA MOVEMENT oottt 187
STATEMENTS AS BUILDING BLOCKS ... i ittt e e 188
BLOCKPROPERTIESottt iiitiitieteteeneeseeaessnnasssaannns 189
PROGRESS FUNCTION AND CONTROL KEYSottt 209

MASTER INDEX
PROGRESS FUNCTION AND CONTROL KEYS

STARTING AND RUNNING PROGRESS

In the following commands, database-name is the name of the database you are using. On DOS and OS/2, the database-name can
be a maximum of eight characters, with no file extension; on UNIX, the database-name can be a maximum of eleven characters.
Braces { } indicate an item is required. Brackets [] indicate an item is optional. See the table on pages 13-38 for a list of startup
options you can use in conjunction with these commands.

Command Syntax Command Action

Operating System

UNIX, DOS & OS/2 prodb database-name empty Creates a new empty database.
VMS PROGRESS/CREATE database-name empty
BTOS/CTOS PROGRESS Create Database

New Database Name database-name
Copy From Database Name empty

Pocket PROGRESS Starting and Running PROGRESS 1

Pocket PROGRESS Starting and Running PROGRESS 2
STARTING AND RUNNING PROGRESS

Operating System Command Syntax Command Action

UNIX, DOS & OS/2 prodb database-name demo Creates a copy of the PROGRESS
demonstration database.

VMS PROGRESS/CREATE database-name demo

BTOS/CTOS PROGRESS Create Database

New Database Name database-name
Copy From Database Name demo

UNIX, DOS & OS/2 prodb database-name parent-database-name Creates a copy of an existing
VMS PROGRESS/CREATE database-name parent—database-name database (parent-database).
BTOS/CTOS PROGRESS Create Database

New Database Name database-name
Copy From Database Name parent-database-name

STARTING AND RUNNING PROGRESS

Operating System Command Syntax Command Action
UNIX, DOS & OS/2 pro [options | Start PROGRESS with no database connected.
VMS PROGRESS/ options
BTOS/CTOS PROGRESS
[Options]

Pocket PROGRESS Starting and Running PROGRESS 3

Pocket PROGRESS Starting and Running PROGRESS 4
STARTING AND RUNNING PROGRESS

Command Syntax Command Action
UNIX, DOS & OS/2 pro database-name | options] Starts single-user PROGRESS.
VMS PROGRESS/OPTIONS database-name

BTOS/CTOS PROGRESS 4GL
[Options] -1 database-name

STARTING AND RUNNING PROGRESS

Operating System Command Syntax Command Action
UNIX, DOS & OS/2 bpro database-name -p procedure-name Runs single-user PROGRESS

[options 1 > error-file in batch or background mode.
VMS PROGRESS/BATCH = batch-queue/JOB_NAME =

job name /ISTARTUP = procedure-name
database-name

BTOS/CTOS PROGRESS 4GL
[Start-Up Procedure -pf] procedure-name

[Batch?] yes

[Options] database-name

Pocket PROGRESS Starting and Running PROGRESS 5

Pocket PROGRESS Starting and Running PROGRESS 6
STARTING AND RUNNING PROGRESS

Operating System Command Syntax Command Action
UNIX, DOS & OS/2 proserve database-name [options | Starts a multi-user database server.
VMS PROGRESS/MULTI_USER =START SERVER/

qualifers database-name

BTOS/CTOS PROGRESS Server
Database Name database-name

[Options]

STARTING AND RUNNING PROGRESS

Command Action

UNIX, DOS & OS/2 mpro database-name [options | Starts a multi-user PROGRESS

session (a server must have been
previously started for the database).

VMS PROGRESS/MUTLI_USER = LOGIN/qualifiers database-name

BTOS/CTOS PROGRESS 4GL (to run the resident version)
[Options] database-name

Pocket PROGRESS Starting and Running PROGRESS 7

Pocket PROGRESS

STARTING AND RUNNING PROGRESS

Starting and Running PROGRESS 8

Operating System

UNIX, DOS & OS/2

VMS

BTOS/CTOS

Command Action

mbpro database-name -p procedure-name
[options | > error-file

PROGRESS/MULTI_USER =LOGIN/
BATCH = batch-queue/JOB_NAME = job-name
/ISTARTUP = procedure-name

database-name
PROGRESS 4GL
[Start-Up Procedure -p] procedure-name
[Batch -b] Yes

[Options] database-name

Starts a multi-user PROGRESS
batch or background session.

STARTING AND RUNNING PROGRESS

Operating System Command Syntax Command Action
UNIX, DOS & OS/2 proshut database-name Shuts down a database server.
VMS PROGRESS/MULTI_USER = SHUTDOWN database-name
BTOS/CTOS PROGRESS Shutdown Server
Database Name database-name
[Server Name]
[IPC Block Size]
[Options}
Pocket PROGRESS Starting and Running PROGRESS 9

Pocket PROGRESS

STARTING AND RUNNING PROGRESS

Starting and Running PROGRESS 10

Operating System

UNIX, DOS & 0OS/2
VMS

Command Syntax

Command Action

prolog database-name
PROGRESS/PURGE_LOG database-name

Removes all but the most recent
entries in the log (.1g) file.

BTOS/CTOS PROGRESS Log Maintenance
Database Name database-name
UNIX, DOS & OS/2 prodel database-name Deletes a database.
VMS PROGRESS/DELETE database-name
BTOS/CTOS PROGRESS Delete Database

Database Name database—name

STARTING AND RUNNING PROGRESS

Command Syntax

Command Action

UNIX, DOS & 0OS/2
VMS

BTOS/CTOS

quoter input-file >output-file

PROGRESS/TOOLS = QUOTER/OUTPUT = output-file input-file

Quoter
Inpu[Flle input—ﬁ[e
[Options] > output—file

Reads input from a file, places quotes
(”) at the beginning and end of each
line, and replaces each quote in the
data with two quote characters.

UNIX, DOS & 0S/2
VMS

quoter input-file -d delimiter-character

PROGRESS/TOOLS = QUOTER/Delimiter = "character/OUPUTline into fields based on a delimiter

=output-file input file

>output-file Reads input from a file, separates each

character, and puts the fields into a

BTOS/CTOS Quoter format for use with the INPUT
Input File inputfile FROM or INPUT THROUGH state-
: ts.
[Options] —d “character” > output—file ments
Pocket PROGRESS

Starting and Running PROGRESS 11

Pocket PROGRESS Starting and Running PROGRESS 12
STARTING AND RUNNING PROGRESS

Operating System Command Syntax Command Action

Reads input from a file, separates each
line into fields based on specified start-
ing and ending column numbers, and
puts the fields into a format for use

UNIX, DOS & OS/2quoter input-file —c { col-col [, col-col] ... }
> output file

VMS PROGRESS/TOOLS = QUOTER/COLUMN = “col-col [, col-col.] with the INPUT FROM or INPUT
.. ”IOUTPUT = output-file input-file THROUGH statements.
BTOS/CTOS Quoter
Input File input-file

[Options] ~c startcol - stopcol ... > output—file

STARTUP OPTIONS

The symbols you use for the option syntax are case sensitive. You must type them exactly as shown.

Opti NIX/ Usage* Max Min Single- | Multi-user
ption gOIS)/(Value Value user Default
08/2 VMS BTOS/CTOS Default
. -1 [options] -1 M
Single user
i 7 | -a ai-file /AFTER_IMAGE = [After Image File | ai-file PS

After image file name after-image-file proutil
rfutil

No tabs in editor out- | -A /NOTAB [Detab Editor Output ?] yes P M

put

Relevant only for UNIX and VMS systems that use shared memory. 5. The practical maximum is considerably lower and is system
2 UNIX only. ~ 2a. UNIX X Windows only.
3. Automatically supplied with bpro and mpro commands

4.The maximum is 63KB on INTEL 8086 and 80286 processors.

Pocket PROGRESS

6. Internal use only. * (M) Multi- userstarh:pcommands

7. Can be used with CONNECT. * (P) Single-user startup commands

8.The practical maximum is system- * (S) Multi-user server/broker startup commands
dependent but is always at least 10.

Starting and Running PROGRESS 13

Pocket PROGRESS STARTUP OPTIONS Starting and Running PROGRESS 14

Option UNIX/ Usage* | Max Min Single- | Multi-user
DOS/ Value Value user Default
0812 VMS BTOS/CTOS Default
7 -b 3 /BATCH = batch-queue [batch] yes P M
Batch /NOINTERACTIVE

1JOB_NAME =job-name
/STARTUP = procedure-name

Border color 2a PM
-bd color
Background color 2a PM
-bg color
1. Relevant only for UNIX and VMS systems that use shared memory. 5. The practical maximum is considerably lower and is system dependent.
2.UNIXonly. 2a. UNIX X Windows only. 6. Internal use only.
3. Automatically supplied with bpro and mpro commands 7. Can be used with CONNECT . * (M) Multi-user startup commands

4.The maximum is 63KB on systems designed for the INTEL 8086 gﬁtmea?vr«acmall Im::t i1sosystem dependent , (P) Single-user startup commands
and 80286 processors and on BTOS/CTOS machines. Is always at le - * (S) Multi-user server/broker startup commands

STARTUP OPTIONS

The symbols you use for the option syntax are case sensitive. You must type them exactly as shown.

Option UNIX/ Usage* | Max Min Single- | Multi-user
DOS/ Value Value user Default
0872 VMS BTOS/CTOS Default
No-kill users ~bn /PROCEED_IF_NO_USERS | [options] -bn proshut
Border width 2a P M
~bw number
Kill users -by /KILL_USERS [options] -by proshut
Blocks in database 7 | -B7 /BUFFERS = integer [Blocks in DB Buffers) n PS 32000 10 20 (8 * users)
buffers proutil
rfutil
1. Relevant only for UNIX and VMS systems that use shared memory. 5. The practical maximum is considerably lower and is system dependent.
2. UNIX only. 2a. UNIX X Windows only. 6. Internal use only. * (M) Mutti-user startup commands
3. Automatically supplied with bpro and mpro commands 7. Can be used with CONNECT. * (P) Single-user startup commands
4.The maximum is 63KB on INTEL 8086 and 80286 processors. 8.The practical maximum is system- * (S) Multi-user server/broker startup commands
dependent but is always at least 10.

Pocket PROGRESS

Starting and Running PROGRESS 15

Pocket PROGRESS STARTUP OPTIONS Starting and Running PROGRESS 16
Option UNIX/ Usage* | Max Min Single- | Multi-user
DOS/ Value Value xlx)se; . Default
082 VMS BTOS/CTOS clault
Index cursors -cn /INDEX_CURSORS =integer | [Index Cursors] n PS 1000 10 20 (4 * users)
Configuration File -cfg filename | /CONFIG_FILE = filename [Options) -cfg filename PS,M
Multi-user client - =<l (parameter file onby) mbshut
Communications Pa- -cp params /COMM_PARMFILE = PS,M
rameter File filename

1. Relevant only for UNIX and VMS systems that use shared memory.
2. UNIX only. 2a. UNIX X Windows only.

3. Automatically supplied with bpro and mpro commands

4.The maximum is 63KB on systems designed for the INTEL 8086
and 80286 processors and on BTOS/CTOS machines.

5. The practical maximum is considerably lower and is system dependent.
6. Internal use only.

7. Can be used with CONNECT . N i start
8. The practical max is system dependent , (r) SM un: user starts oommandcs’
but is always at least 10. (P) Single-user P commands
* (S) Multi-user server/broker startup commands

STARTUP OPTIONS

The symbols you use for the option syntax are case sensitive. You must type them exactly as shown.

Option NIX/ Usage* | Max Min Single- | Multi-user
pelo LD’OS/ Value Value | user Default
0s12 VMS BTOS/CTOS Default
. —csn /CURSOR_SIZE = integer [Options] cs PS, 256 1 6 6
Cursor size - proutil,
rfutil
Option on proutil and | -C /UTILITIES = option PROGRESS Utilities proutil,
rfutil commands Database Name datab rfutil
Utiltity Name utiltity-name
[Options} options
Date format -d dateform /DATE_FORMAT = string [Date Format] dateform PM mdy mdy

1. Relevant only for UNIX and VMS systems that use shared memory.

2. UNIX only. 2a. UNIX X Windows only.
3. Automatically supplied with bpro and mpro commands
4.The maximum is 63KB on INTEL 8086 and 80286 processors.

Pocket PROGRESS

5. The practical maximum is considerably lower and is system dependent.

6. Internal use only. * (M) Multi-user startup commands

7. Can be used with CONNECT. * (P) Single-user startup commands

8.The practical maximum is system- * (S) Multi-user server/broker startup commands
dependent but is always at least 10.

Starting and Running PROGRESS 17

Pocket PROGRESS STARTUP OPTIONS Starting and Running PROGRESS 18
i U * M. Mi Single- | Multi-
Option bos T |Vae [Value [user | Default
0S/2 VMS BTOS/CTOS Default
X -da ~da (parameter file only) not applicable M
Direct access
7 | -db physical- | -db physical-db [Options] -db physical-dbname PS,M

Physical database name | ab; 12 file only)

Display host 2a PM
~display
hostname:
server:screen

1. Relevant only for UNIX and VMS systems that use shared memory.

2. UNIXonly. 2a. UNIX X Windows only.

3. Automatically supplied with bpro and mpro commands

4.The maximum is 63KB on systems designed for the INTEL 8086
and 80286 processors and on BTOS/CTOS machines.

5. The practical maximum is considerably lower and is system dependent.
6. Internal use only.
7. Can be used with CONNECT . . "
> h M) Multi-user startup commands
8. The practical 'max |1sosystem dependent , ?P)) Single-user startupp commands
butis always at least 10. * (S) Multi-user server/broker startup commands

STARTUP OPTIONS

The symbols you use for the option syntax are case sensitive. You must type them exactly as shown.

Option UNIX/ Usage* | Max Min Single- | Multi-user
DOS/ Value Value | user Default
082 Y BTOS/CTOS Defaul
-dt dbtype ~dt dbi not applicable PS,M PROG- | PROGRESS
Database type 7 (parar?l’z:r file only) PP RESS
Directory size -Dn /COMPILED FILE _ [Directory Size | n PM 500 5 36 36 entries
DIRECTORY = integer entries entries | entries
Edit buffer size (in KB) | -¢ KB /EDIT_BUFFER = integer (Edit Buffer Size | n PM (4GB)4 4 2 32 32

1. Relevant only for UNIX and VMS systems that use shared memory.

2. UNIX only. 2a. UNIX X Windows only.
3. Automatically supplied with bpro and mpro commands
4.The maximum is 63KB on INTEL 8086 and 80286 processors.

Pocket PROGRESS

5. The practical maximum is considerably lower and is dependent.

6. Intemal use only. * (M) Multi-user startup commands

7. Can be used with CONNECT. * (P) Single-user startup commands

8.The practical maximum is system- * (S) Multi-user server/broker startup commands
dependent but is always at least 10.

Starting and Running PROGRESS 19

Pocket PROGRESS STARTUP OPTIONS Starting and Running PROGRESS 20

Option UNIX/ Usage* | Max Min Single- | Multi-user
DOS/ Value Value | user Default
0872 VMS BTOS/CTOS Default

7| -ems not applicable not applicable PM
Expanded memory size | (DOS only)

European numeric -E /NuMERIC FORMAT = [European Number Format?] yes | P, M
format AMERICAN
EUROPEAN
Font PM
~fn fonlnameza
or
-font fontname

1. Relevant only for UNIX and VMS systems that use shared memory. 5. The practical maximum is considerably lower and is system dependent.

2.UNIXonly. 2a. UNIX X Windows only. 9,- g‘r’\";l U:d 0"%1 CONNECT

3. Automatically supplied with bpro and mpro commands . used wi . * (M) Multi-user startup commands

4.The maximum is 63KB on systems designed for the INTEL 8086 8. The practical max is system dependent . oy ginqie_user smm?p commands

and 80286 processors and on BTOS/CTOS machines. but s always at least 10. * (S) Multi-user server/broker startup commands

STARTUP OPTIONS
The symbols you use for the option syntax are case sensitive. You must type them exactly as shown.

i / Usage* |Max Min Single- | Multi-user
Option ggls)/(® Value Value uscg Default
082 VMS BTOS/CTOS Default
Foreground color PM
~fg color
or -foreground
color
Force access -F /ACCESS = &NORMAL} [options] -F PS
{FORCED} proshut
) 7 | -g bi-file /BEFORE_IMAGE =bi-file | [Before Image File] bi-file proutil,
Before image file name rfutil,
PS
1. Relevant only for UNIX and VMS systems that use shared memory. 5. The practical maximum is considerably lower and is system dependent.
2.UNIX only. 2a. UNIX X Windows only. 6. Internal use only. * (M) Mutti-user startup commands
3. Automatically supplied with bpro and mpro commands 7. Can be used with CONNECT. * (P) Single-user startup commands
4.The maximum is 63KB on INTEL 8086 and 80286 processors. 8.The practical maximum is system- * (S) Multi-user server/broker startup commands
dependent but is always at least 10.

Pocket PROGRESS

Starting and Running PROGRESS 21

Pocket PROGRESS STARTUP OPTIONS Starting and Running PROGRESS 22

Option UNIX/ Usage* | Max Min Single- | Multi-user
DOS/ Value Value | user Default
0S/2 VMS BTOS/CTOS Default

Geometry 2a PM
-geometry
widthxheight
+xoff +yoff

Before image truncate |-G n /ROLL_FORWARD_ [options] -G n proutil
interval INTERVAL = integer rfutil
Number of databases -hn /MAXDATABASES =n [Number of Databases] n PS,M 240 1 5 5

1. Relevant only for UNIX and VMS systems that use shared memory. - The practical maximum is considerably lower and is system dependent.

2. UNIX only. 2a. UNIX X Windows only. 6. Internal use only.

3. Automatically supplied with bpro and mpro commands 7. Can be used with CONNECT . * (M) Mutti-user startup commands

4.The maximum is 63KB on systems designed for the INTEL 8086 8. The practical max is system dependent . o) ginqie_user startup commands

and 80286 processors and on BTOS/CTOS machines. but is always at least 10. + (S) Multi-user server/broker startup commands

STARTUP OPTIONS

The symbols you use for the option syntax are case sensitive. You must type them exactly as shown.

Option UNIX/ Usage* | Max Min Single- | Multi-user
DOS/ Value Value use;' Default
0s/2 VMS BTOS/CTOS Default

2 not applicable P S 2000 1 Sys. de- | System
Heap size -hs KB PP pﬁdent Dependent
-H host-name | HOST =host-name not applicable M
Host name
7 | /NORECOVERY [Options] -i PS,
No crash protection rfutil

1. Relevant only for UNIX and VMS systems that use shared memory. 5. The practical maximum is considerably lower and is system dependent.
2. UNIX only. 2a. UNIX X Windows only.

3. Automatically supplied with bpro and mpro commands
4

.The maximum is 63KB on INTEL

Pocket PROGRESS

8086 and 80286 processors.

6. Internal use only. * (M) Multi-user startup commands

7. Can be used with CONNECT. * (P) Single-user startup commands

8.The practical maximum is system- * (S) Multi-user server/broker startup commands
dependent but is always at least 10.

Starting and Running PROGRESS 23

Pocket PROGRESS STARTUP OPTIONS Starting and Running PROGRESS 24

i IX/ Usage* |Max Min Single- | Multi-user
Option ggs / Value Value use% Default
0s/2 VMS BTOS/CTOS Default
Icon 2a PM
~icon filename
Iconic PM
~iconic
Total private buffers -1 buffers /TOTAL PRIVATE S 5 0 0 2 * users
P & BUFFERS =integer ~ 32000

1. Relevant only for UNIX and VMS systems that use shared memory. 5. The practical maximum is considerably lower and is system dependent.

2.UNIXonly. 2a. UNIX X Windows only. 6. Internal use only.

3. Automatically supplied with bpro and mpro commands 7. Can be used with CONNECT . * (M) Mutti-user startup commands

4.The maximum is 63KB on systems designed for the INTEL 8086 8. The practical max is system dependent . o) ginie_user startup commands

and 80286 processors and on BTOS/CTOS machines. but is always at least 10. * (S) Multi-user server/broker startup commands

STARTUP OPTIONS

The symbols you use for the option syntax are case sensitive. You must type them exactly as shown.

Option UNIX/ Usage* | Max Min Single- | Multi-user
DOS/ Value Value uDsctl: . Default
0s/2 VMS BTOS/CTOS efault

Keyword forget -k filename /KEYWORD_FORGET [Keyword Forget List] filename PM
= filename
Local buffer size 7|-1KB /LOCAL_BUFFER _SIZE= [Local Buffer Size | n PM 4G 411 10 10
(in KB) integer B
7 | -Id logical /LOGICAL_DBNAME [Options] -Id logical-dbname PM
Logical database name | dbname = logical-dbname

1. Relevant only for UNIX and VMS systems that use shared memory. 5. The practical maximum is considerably lower and is system dependent.
2.UNIX only. 2a. UNIX X Windows only.

3. Automatically supplied with bpro and mpro commands
4.The maximum is 63KB on INTEL 8086 and 80286 processors.

Pocket PROGRESS

6. Intemal use only. * (M) Multi-user startup commands

7. Can be used with CONNECT. * (P) Single-user startup commands

8.The practical maximum is system- * (S) Multi-user server/broker startup commands
dependent but is always at least 10.

Starting and Running PROGRESS 25

Pocket PROGRESS STARTUP OPTIONS Starting and Running PROGRESS 26

Option UNIX/ Usage* | Max Min Single- | Multi-user
DOS/ Value Value user Default
0s72 VMS BTOS/CTOS Default

Leave memory (_lglE) g only) not applicable not applicable PS, M |[200 0 0 0
Locking table entries | -Ln /LOCK_TABLE = integer [Locking Table Entries] n S >=2000 |32 500
16 /SERVER_TYPE=AUTO S
Spawned server -ml -
1 2 /SERVER_TYPE=MANUAL S
Manual server -m2 -
1. Relevant only for UNIX and VMS systems that use shared memory. - The practical maximum is considerably lower and is system dependent.
2.UNIXonly. 2a UNIX X Windows only. 6. Internal use only.
3. Automatically supplied with bpro and mpro commands 7. Can be used with CONNECT . * (M) Multi-user startup commands

4.The maximum is 63KB on systems designed for the INTEL 8086 g;nThe ?’“‘icatl lm:s"t iiosYS“’m dependent . o)’ Single-user startup commands
and 80286 processors and on BTOS/CTOS machines. s always at lo : * (S) Multi-user server/broker startup commands

STARTUP OPTIONS

The symbols you use for the option syntax are case sensitive. You must type them exactly as shown.

Option UNIX/ Usage* | Max Min Single- | Multi-user
DOS/ Value Value user Default
082 VMS BTOS/CTOS Default
1 3 2 /SERVER_TYPE = LOGIN S
Secondary login broker | ™™
i 1 .2 | MAXCLIENTS =integer S 2048 1 users/servers
Max clients per server | -Ma clients
. .7 |-Mfseconds | /TRANSACTION_DELAY PS 32768 0 0 0
Suppress .bi file write =seconds

1. Relevant only for UNIX and VMS systems that use shared memory. 5. The practical maximum is considerably lower and is system dependent.

2. UNIX only. 2a. UNIX X Windows only. 6. Internal use only. * (M) Multi-user startup commands

3. Automatically supplied with bpro and mpro commands 7. Can be used with CONNECT * (P) Single-user startup commands

4.The maximum is 63KB on INTEL 8086 and 80286 processors. 8.The practical maximum is system- * (S) Multi-user server/broker startup commands
dependent but is always at least 10.

Pocket PROGRESS Starting and Running PROGRESS 27

Pocket PROGRESS STARTUP OPTIONS Starting and Running PROGRESS 34
Option UNIX/ Usage* | Max Min Single- | Multi-user
DOS/ Value Value user Default
0s2 VMS BTOS/CTOS Default
Put screen refresh 2a M
-psc
Password 7 -P password | /PASSWORD = “string” [Password] password P M
Quick request -q /QUICK_REQUEST [Quick Request ?] yes PM
ANSI SQL -Q JANSI_SQL [ANSISQL?] yes PMS

1. Relevant only for UNIX and VMS systems that use shared memory. 5. The practical maximum is considerably lower and is system dependent.

2. UNIX only. ~ 2a. UNIX X Windows only. 6. Internal use only.

3. Automatically supplied with bpro and mpro commands 7. Can be used with CONNECT . * (M) Multi-user startup commands

4.The maximum is 63KB on systems designed for the INTEL 8086 8. The practical max is system dependent , (P) Single-user startup commands

and 80286 processors and on BTOS/CTOS machines. but s aiways at least 10. * (S) Mutti-user server/broker startup commands

STARTUP OPTIONS

The symbols you use for the option syntax are case sensitive. You must type them exactly as shown.

Option NIX/ Usage* | Max Min Single- | Multi-user
P gOIS)/(¢ Value Value user Default
0s/2 VMS BTOS/CTOS Default
7 2 not applicable not applicable PS Raw Raw 1/0
Buffered 1/0 -r PP PPy rfutil 1/0
Return fault table -rft n not applicable not applicable P M 1000 25 100 100
(DOS only)

E‘n:)céyptcd Compiler -rx /XCOMPILER [Options] -rx PS,M

e

1. Relevant only for UNIX and VMS systems that use shared memory. 5. The practical maximum is considerably lower and is system dependent.

2. UNIX only. ~ 2a. UNIX X Windows only.
3. Automatically supplied with bpro and mpro commands

4.The maximum is 63KB on INTEL 8086 and 80286 processors.

Pocket PROGRESS

6. Internal use only. * (M) Mutti-user startup commands
7. Can be used with CONNECT. * (P) Single-user startup commands
8.The practical maximum is system- * (S) Multi-user server/broker startup commands

dependent but is always at least 10.

Starting and Running PROGRESS 35

STARTUP OPTIONS Starting and Running PROGRESS 36

Pocket PROGRESS
Option UNIX/ Usage* | Max Min Single- | Multi-user

DOS/ Value Value user Default
0S72 VMS BTOS/CTOS Default

Raw1/O0 7 R 2 not applicable not applicable PS ;{/.aw Raw 1/0

7 -RO /READONLY [Options] -RO P
Read only
Stack size (in KB) -sn /STACK = integer [Stack Size] n PS,M |31 2 12 12
7 -S /SERVICE = server-name [Server Name | name PM
Server name server-name

1. Relevant only for UNIX and VMS systems that use shared memory.

2.UNIX only. 2a. UNIX X Windows only.

3. Automatically supplied with bpro and mpro commands

4.The maximum is 63KB on systems designed for the INTEL 8086
and 80286 processors and on BTOS/CTOS machines.

5. The practical maximum is considerably lower and is system dependent.
6. Internal use only.

7. Can be used with CONNECT . N - start.
8. The practical max is system dependent , M) Mum user p commands
but is always at | 10 (P) Single-user startup commands
’ * (S) Mutti-user server/broker startup commands

STARTUP OPTIONS

The symbols you use for the option syntax are case sensitive. You must type them exactly as shown.

Option UNIX/ Usage* | Max Min Single- | Multi-user
P DOS/ Value Value user Default
082 VMS BTOS/CTOS Default
Save temp files -t /SAVE_TEMP_FILES [options] -t P M
Title 2a M
~title string
Temporary directory -T dir-name | /TEMPORARY_FILES =dir- | [Temporary Directory] PM current working
name directory name directory
Speed sort -TB blocksize | [TBLOCKS = blocksize [sort space] blocksize PM 31 1 2 2

1. Relevant only for UNIX and VMS systems that use shared memory. 5. The practical maximum is considerably lower and is system dependent.

2. UNIX only. 2a. UNIX X Windows only. 6. Intemal use only. * (M) Multi-user startup commands

3. Automatically supplied with bpro and mpro commands 7. Can be used with CONNECT. * (P) Single-user startup commands

4.The maximum is 63KB on INTEL 8086 and 80286 processors. 8.The practical maximum is system- * (S) Multi-user server/broker startup commands
dependent but is always at least 10.

Pocket PROGRESS Starting and Running PROGRESS 37

Pocket PROGRESS STARTUP OPTIONS Starting and Running PROGRESS 38

Option NIX/ Usage* | Max Min Single- | Multi-user
P gOS/ Value Value | user Default
0872 VMS BTOS/CTOS Default
Merge number -TMn /MERGE_NUM = integer [merge number] n PM 32 1 5 S
7 -U userid /USER = “string” (userid) userid PM
Userid
Video codes -v not applicable not applicable PM
video-codes
(DOS & 0S8/2
only)

1. Relevant only for UNIX and VMS systems that use shared memory. 5. The practical maximum is considerably lower and is system dependent.

2.UNIX only. 2a. UNIX X Windows only. 6. Internal use only.

3. Automatically supplied with bpro and mpro commands 7. Can be used with CONNECT . * (M) Multi-user startup commands

4.The maximum is 63KB on systems designed for the INTEL 8086 8. The practical max is system dependent , (P) Single-user startup commands

and 80286 processors and on BTOS/CTOS machines. but is always at least 10. * (S) Multi-user server/broker startup commands

STARTUP OPTIONS

The symbols you use for the option syntax are case sensitive. You must type them exactly as shown.

Option UNIX/ Usage* [Max Min Single- | Multi-user
DOS/ Value Value user Default
0s/2 VMS BTOS/CTOS Default

ORACLE Version -VOn /ORACLE_VERSION = integer | not applicable PM 6 5 Default | Default

RAC | ORACLE
LE ver- | version for
sion for | your system
your
system

X Windows 2a PM
-ws

1. Relevant only for UNIX and VMS systems that use shared memory. 5. The practical maximum is considerably lower and is system dependent.

2 UNIX only. 2a. UNIX X Windows only. 6. Internal use only. * (M) Multi-user startup commands
3. Automatically supplied with bpro and mpro commands 7. Can be used with CONNECT. * (P) Single-user startup commands
4.The maximum is 63KB on INTEL 8086 and 80286 processors. 8.The practical maximum is system- * (S) Multi-user server/broker startup commands
dependent but is always at least 10.

Pocket PROGRESS Starting and Running PROGRESS 39

Pocket PROGRESS STARTUP OPTIONS Starting and Running PROGRESS 40

Option UNIX/ Usage* | Max Min Single- | Multi-user

DOS/ Value Value user Default
0872 VMS BTOS/CTOS Default

Extended alphabet -xc language | /COLLATE = language not applicable PM,S

support

Statistics -y /STATISTICS [options | -y P M

Century . YEAR_OFFSET = integer [century | n PM 9900 1100 1900 1900

vy on -

1. Relevant only for UNIX and VMS systems that use shared memory. 5. The practical maximum is considerably lower and is system dependent.

2.UNIX only. 2a. UNIX X Windows only. 6. Internal use only.

3. Automatically supplied with bpro and mpro commands 7. Can be used with CONNECT . * (M) Multi-user startup commands

4.The maximum is 63KB on systems designed for the INTEL 8086 8. The practical max is system dependent . by gingle-user startup commands

and 80286 processors and on BTOS/CTOS machines. but is always at least 10. * (S) Multi-user server/broker startup commands

STARTUP OPTIONS

The symbols you use for the option syntax are case sensitive. You must type them exactly as shown.

Option NIX/ Usage* Max Min Single- | Multi-user
P II.DIOS/ Value Value uscg Default
0872 VMS BTOS/CTOS Default
Restore 25 line mode | -25 not applicable not applicable PM
on oper. system escape
IPC Block Size not applicable | not applicable [IPC Block Size] S,M 64 KB 512 2560
(in bytes)
Number of IPC Blocks | not applicable | not applicable [Number of IPC Blocks] N 2 per user
Maximum Record Size | not applicable | not applicable [Maximum Record Size] S 64 1 25 25
(in kilobytes)
1. Relevant only for UNIX and VMS systems that use shared memory. 5. The practical maximum is considerably lower and is system dependent.
2.UNIXonly. 2a. UNIX X Windows only. 6. Internal use only. * (M) Multi-user startup commands
3. Automatically supplied with bpro and mpro commands 7. Can be used with CONNECT. * (P) Single-user startup commands
4.The maximum is 63KB on INTEL 8086 and 80286 processors. 8.The practical maximum is system- * (S) Multi-user server/broker startup commands

dependent but is always at least 10.

Pocket PROGRESS Starting and Running PROGRESS 41

Pocket PROGRESS

Environment Variables 42

ENVIRONMENT VARIABLES
Variable Description Operating Default
Name System
DLC Full name of the directory containing the PROGRESS UNIX Q fusr/dlc
software.
pos & 0s24| \bLc
VMS CA| spiski(pL)
BTOS CA| [sys]<dlc>
PATH A list of pathnames of the directories PROGRESS E
h UNIX
searches to find DOS executable commands or programs
used with the DOS statement, or to find OS/2 executable DOS & 0S/2 ‘E
commands or programs used with OS/2, or to find UNIX
executable commands or programs used with the UNIX, VMS [:I
INPUT THROUGH, or OUTPUT THROUGH statements. BTOS D

(continued)

ENVIRONMENT VARIABLES

Variable Description Operating Default
Name System
PROPATH A list of pathnames of the directories PROGRESS UNIX E :$DLC:$DLC/prodemo:$DLC/proguide
searches for procedures. Your current dlrcclo?' E
indicated by a leading semicolon (DOS or 0S/2) or colon (UNIX)| DOS & 0S/2 ;% DLC%;%DLC\PRODEMO;%DLC\PROGUIDE
or by two adg(cent imbedded semicolons (DOS or 0S/2) or VMS (2 1f DLC is defined to be $DISK1:[DLC] then
colons (UNIX) “ $DISK1:[DLC],$ DISK1:[DLC.PRODEMO],
The defaultsdshown for PIIIOP?Tl-La:;: ntgxte{jnally . E $DISK1:{DLC.PROGUIDE)"
concatenated onto any value already defined exiernally . . . ;
for PROPATHL. BTOS [sys] < dlc >:[sys] < dlc > prodemo/:[sys] < dIc > proguide/
/prot
PROTERMCAP| Name of the file containing terminal definitions. UNIX IE $DLC/protermcap
pOs & 0524 | %DLC%\PROTERM.CAP
vMS (4 | pLC: PROTERM.DAT
BTOS E [sys] < dlc > protermcap

Pocket PROGRESS

(continued)

Environment Variables 43

Pocket PROGRESS

ENVIRONMENT VARIABLES

Environment Variables 44

BTOS]

Variable Description Operating Default
Name System
TERM ’tI)'he type oé gerr%galﬁ?; arf ;xsing. Valug. of "Ij'ERM can UNIX LA
e returned by AL function and set during pro-

gram execution with the statement P DOS & 0§72 D
TERMINAL = fermid. VMS LA

BTOS LA | B20
PROTERM The type of terminal you are usinF. Value of PROTERM UNIX D
can be returned by TERMINAL function and set during [:]

program execution with the statement DOS & 082
TERMINAL =ermid. VMS LA | none

ENVIRONMENT VARIABLES

Variable Description Operating Default
Name System
PROMSGS Name of the file containing the text of the PROGRESS UNIX E $DLC/promsgs
system messages.
DOs & 0s/21A4 | %DLC%\PROMSGS
vMS (L4 | pLC:PROMSGS.DAT
BTOS A | isysi<dic>promsgs
PROLOAD i in whi is i .
The directory in which the PROBUILD product is installed UNIX E /dicload
pos & 0s/2LiA | \DLCLOAD
VMS (4 | spiski{pLCLOAD]
BTOS A | (sys)<dicload >

Pocket PROGRESS

Environment Variables 45

Pocket PROGRESS

ENVIRONMENT VARIABLES

Environment Variables 46

Variable Description Operating Default
Name System
PROEXE The name of the PROGRESS executable file. This is the file UNIX lz $DLC/_progres
OGRESS.
that executes when you start PR DOS & 0572 E %DLC%_PROGRES.EXE
VMS (4| DLCPROGRESEXE
BTOS IE [sys] <dlc>_progres
PROSRV The name of the executable PROGRESS SERVER file. This UNIX (A | spLC/_mprostv
is the file that executes when you start the PROGRESS B
database server (or broker). pos & 0s2 A %DLC%_MPROSRV.EXE
VMS [A| DpLC._MPROSRVEXE
BTOS [sys}<dlc>_mprosrv

ENVIRONMENT VARIABLES

Variable Description Operating Default
Name System
PROCFG The name of the configuration file. The configuration file UNIX E $DLC/progress.cfg
specifies the PROGRESS products and components you are
P o ase, pos & 082 (A | %DLC%\PROGRESS.CFG
VMS [A | DLCPROGRESS.CFG
BTOS [E [sys] < dlc > progress.cfg
PROOVL DOS Memory Saver (DMS) only: UNIX [:]
The directory where the .OVL overlay file is stored. DOS & OS2 %DLC%\ PROGRES.OVL
VMS |
BTOS]
Pocket PROGRESS Environment Variables 47

Pocket PROGRESS

ENVIRONMENT VARIABLES

Environment Variables 48

Variable Description Operating Default
Name System
DLCFT The name of the directory into which you installed the UNIX [E /usr/dlcft
PROGRESS FAST TRACK product. DOS & OS/2 [E \DLCFT
VMS CA| spiski(pLcFT)
BTOS CA | [sys]<dicft >

THE PROGRESS KEYBOARD

Key .| Procedure] Standard Standard Standard Allowed in
Function Editor| £ tion | Keyboard Key Control Key Function Key ON statement

DOS |[UNIX | BTOS DOS | UNIX | BTOS
0S/2 VMS CTOS 0S/2 | VMS CTOS

ABORT v [952&"‘” * ACTION-/

APPEND-LINE v CTRL-A | CTRL-A| CODE-A | ALT-F2| F12 | SHFT-F2

BACKSPACE v Vv BACKSPACE P

BACK-TAB 7 SHIFT-TAB*"* CTRL-U | cTRL-U| coDE-U gggE- v

BELL v

BLOCK e CTRL-V | CTRL-V| CODE-v |ALT-F4 F14 SHIFT-F4

* ESC,
BOTTOM COLUMN coe-w | ALT-8 SBF\X/SSR v
ESC,B
* See paragraph at end of table ** UNIX: Ctrl-\ (Depends on UNIX stty setting for quit) ***DOS only
for explanation. VMS: Ctrl-Y, STOP (continued)

Pocket PROGRESS The PROGRESS Keyboard 49

Pocket PROGRESS The PROGRESS Keyboard 50
THE PROGRESS KEYBOARD

Key .. | Procedure| Standard Standard Standard Allowed in
Function Editor Execution | Keyboard Key Control Key Function Key ON statement

DOS UNIX | BTOS DOs UNIX BTOS
0S§/2 VMS | CTOS 0s/2 | VMS CTOS

BREAK-LINE v CTRL-B | CTRL-B| CODE-B | ALT-F1 F11 |SHIFT-F1

BTOS/CTOS-END v EXIT EXEC(BTOS) or
FINISH EXEC(CTOS)

PROGRESS EXIT (PROGRESS
Utility to quit CONTEXT with

PAUSE.)
CANCEL PICK * ALT-x | Esc.x | SomerL v
CHOICES * CODE-C | ALT-C| ESC,C Vv
CLEAR v vV CTRL-Z | CTRL-Z| CODE-Z F8 F8 E8 Vv

* See paragraph at end of table for explanation. (continued)

THE PROGRESS KEYBOARD

Key Standard Standard Standard Allowed in
Function Keyboard Key Control Key Function Key ON statement
it £ach T 565 T oNX| sros [5os ToNK T 5105 T s
0S/2 VMS | CTOS 0S/2 | VMS CTOS
CURSOR-UP v v A CTRL-K | CTRL-K v
CURSOR-DOWN v v v CTRL-J | CTRL-J v
CURSOR-LEFT Vv v < v
CURSOR-RIGHT v v > CTRL-L | CTRL-L Vv
DELETE-CHARACTER| 1~ p” DELETE(BTOS/CTOS) v
DELETE-COLUMN * S | AT-z| Esc.z p
* See paragraph at end of table for explanation. (continued)

Pocket PROGRESS The PROGRESS Keyboard 51

Pocket PROGRESS The PROGRESS Keyboard 52
THE PROGRESS KEYBOARD

Key Editor| Procedure Standard Standard Staf\dard Allowed in
Function Execution | Keyboard Key Control Key Function Key ON statement
DOS UNIX | BTOS DOS UNIX | BTOS
0S/2_| VMS | CTOS 0S/2 | VMS | CTOS
DELETE-FIELD cope-) | ALT-D | ESC,D
OELETE_LINE - CTRL-D | CTRL-D| CODE-D | F10 F10 F10
DOS-END v Type EXIT]
ENDKEY v =
_ ESC (DOS & 0S/2), | cTRL-E - _
END-ERROR v v ESC (DOS & 08/2), CTRL-E| CODE-E | Fa F4 Fa v
ERROR v v
FIND vV CTRL-F | CTRL-F | CODE-F | ALT-F3 F13 | SHIFT-F3
(continued)

* See paragraph at end of table for explanation. 1. BTOS/CTOS

THE PROGRESS KEYBOARD

Key Editor | Procedure| Standard Standard Standard Allowed in
Function Execution |Keyboard Key Control Key Function Key ON statement
G DOS | UNIX | BTOS DOS | UNIX

: 0S/2 VMS | CTOS 0S/2 VMS
GET Vv CTRL-G | CTRL-G | CODE-G F5 F5 F5
Go v v CTRL-X | CTRL-X_| coDE-x F1 F1 - v
GoTo * s | ALt-a ESC,G v
HELP v | 2okl HELP CTRL-W| CTRL-W | CODE-W F2 F2 E2 v

CODE
HOME V Vv HOME ESC-H -NEXT Vv

-PAGE
INSERT COLUMN * CODE- | ALT-N ESC,N v

SHIFT-C

INSERT FIELD" cobe-1 | ALT- ESC,! v
* See paragraph at end of table for explanation. **+ Allowed only if help procedure, applhelp.p., exists. (continued)

Pocket PROGRESS The PROGRESS Keyboard 53

Pocket PROGRESS The PROGRESS Keyboard 54
THE PROGRESS KEYBOARD

Key Editor Procedure Standard Standard Standard Allowed in
Function Execution | Keyboard Ke Control Ke Function Ke ON statement
Y Y y Y

DOS UNIX BTOS DOS |UNIX | BTOS

0S/2 VMS CTOS 0S/2 |[yMS | CTOS
INSERT-FIELD DATA* s | aut-F | Esc.F v
INSERT-FIELD *
LABEL ALT-E | ESC,E Vv
INSERT-MODE e Vv INSERT CTAL-T |CTRL-T | CODE-T F3 F3 F3 v
LEFT-END vV CTRL-4€ (DOS & 0S/2) CODE-€ 4

ESC - €€ (UNIX & VMS)

MAIN MENU ¥ CODE-M | AlT-M | ESC.M v
MOVE * MOVE ALT-V | ESC.V)
NEW-LINE VvV CTRL-N | CTRL-N | CODE-N F9 F9 F9
PAGE-DOWN Vv NEXT PAGE or PG DN ALT-F6 | F1e SHIFT-F6

* See paragraph at end of table for explanation.

THE PROGRESS KEYBOARD

Key Editor |Procedure Standard Standard Standard Allowed in
Function Execution | Keyboard Ke Control Key Function Key ON statement
T DOS [UNIX |BTOS | pos |UNIX [BTOS |
0S/2 | VMS |[CTOS 0S/2 | VMS CTOS
PAGE-UP Vv PREV PAGE or PG UP ALT-F5 | E15 SHIFT-FS
PICK”* CODE-K | ALT-P_ | ESC.P v
_ x CODE- _
PICK-AREA st | ALT-W | Esc,w v
PICK-LABEL-DATA * CODE-Q | o T-q | Esc.a v
PUT v CTRL-P | cTRL-p| CODE-P F6 F6 Fé
RECALL v [CTAL-R | CTRL-R| coDE-R | F7 F7 F7 vV
REPAINT Vv ALT-P ESC,P v
® CODE-
REPORTS smierT | ALT-A | Esc,A v
* See paragraph at end of table for explanation. (continued)

Pocket PROGRESS The PROGRESS Keyboard 55

Pocket PROGRESS The PROGRESS Keyboard 56
THE PROGRESS KEYBOARD

Key Editor |Procedure Standard Standard Standard Allowed in
Function Execution | Keyboard Key Control Key Function Key |ON statement
DOS UNIX BTOS DOS|UNIX | BTOS
0S/2 VMS CTOS 0S/2{VvMS [CTOS
RESUME-DISPLAY] 1~ vV CTRL-Q| CTRL-Q
RETURN 1% vV RETURN CTRL-M| CTRL-M Vv
RIGHT-END v CTRL-»(DOS & 0S/2) | cTRL-E | CTRL-E Fa Fa |CODE-» Vv
ESC - P (UNIX & VMS)
SEARCH vV CODE-F | ALT-F| ESC,F
SCROLL-LEFT * ALT-L| Esc,L [sHIFT-€ Vv
SCROLL-RIGHT * ALT-R| ESc,R |SHIFT-P v
SETTINGS * CODE-s | ALT-S| Esc,s Vv
*¥**| ACTION-
STOP Vv BREAK CTRL-C CANCEL Vv

* See paragraph at end of table for explanation. ** ** Depends on UNIX stty setting for intr

THE PROGRESS KEYBOARD

Key Editor | Procedure| Standard Standard Standard Allowed in
Function Execution | Keyboard Key Control Key Function Key ON statement
DOS | UNIX |[BTOS | DOS | UNIX BTOS
0s/2 | VMs _|CTOS | 0S/2 | VMS | CTOS
STOP-DISPLAY Vv vV CTRL-S| CTRL-S
TAB v Vv TAB CTRL-I | CTRL-I v
TOP-COLUMN * ALT-T | Esc, e
CURSOR
uP
ESC,T

" See paragraph at end of table for explanation.

Pocket PROGRESS The PROGRESS Keyboard 57

The PROGRESS Keyboard 58

Pocket PROGRESS
THE PROGRESS KEYBOARD

Key Editor | Procedure| Standard Standard Standard Allowed in
Function Execution | Keyboard Key Control Key Function Key ON statement
DOS | UNIX |BTOS | DOS | UNIX BTOS
os2| vms [cros | 0s2 | vivs CTOS
UNIX-END v cTR L_'D *
VMS-END VvV LOGOUT

* * Depends on UNIX stty setting for eof

* These key functions do not have automatic actions associated with them when you use them in the editor or while running a procedure.
However, these key functions are available for use with the ON statement together with the KEYFUNCTION and LASTKEY functions.

For example, one of the speclal key functions marked with an asterisk in the tables above is CHOICES. The following statement check
to see if the user pressed the CHOICES key. The example defines the F2 key as the CHOICES key. If the user presses F2, the pro-

cedure might then display a list of available choices.

KEYCODES AND KEY LABELS

Allowed in ON Statement Allowed in ON Statement
Key Code Key Label or GO-ON Phrase Key Code Key Label or GO-ON Phrase
DOS & 0S/2 UNIX VMS DOs & 0s/2] UNIX VMS
CTRL-@ [v (1) v 13 ENTER (DOS/0S2) v v (1) P
1-7 CTRL-A through RETURN (UNIX) v v (1) v
CTRL-G v v (1) v 14 - 26 CTRL-N through v
CTRL-Z Vv Vv
8 v v
BACKSPACE (1) vV 27 ESc ~ (1) P
9 TAB [V(1) [
28 CTRL-\ vV (1
10 - 12 CTRL-J through L a) L
CTRL-L Vv vV (1) Vv 29 CTRL-] v v (1) v
(1) - Unless pre-empted by UNIX stty settings for intr, quit, (continued)

stop display, resume display. BTOS/CTOS keycodes can be found in

Chapter 2 of the PROGRAMMING Handbook.

Pocket PROGRESS The PROGRESS Keyboard 59

Pocket PROGRESS

KEYCODES AND KEY LABELS

The PROGRESS Keyboard 60

(1) - Unless pre-empted by UNIX stty settings for intr, quit,

stop display, resume display.

(2) - Only if key is defined in protermcap file.

(3) - Corresponds to Alt-F1 through Alt-F10 on the DOS keyboard.

Allowed in ON Statement Allowed in ON Statement
Key Code Key Label or GO-ON Phrase Key Code Key Label or GO-ON Phrase
DOS & 0s/2| UNIX | VMS DOS & 0S/2 UNIX VMS
30 CTRL-" vV vV (1) vV 256 - 299 null string
31 CTRL- _ v v (1) v 301 - 310 F1 - F10 v Vv (2) ¥~ (6)
32 - 126 Corresponding extended o | e 311-320 F11 - F20 v | v v
127 DEL P v (1) P 321 - 330 F21 - F30 v)| ¥ v
128 - 255 Corresponding extended 331 - 340 F31 - F40 el ¥ (@) ¥
ASCIl character (continued)

(4) - Corresponds to Shift-F1 through Shift F-10 on the DOS keyboard.
(5) - Corresponds to Ctri-F1 through Ctrl-F10 on the DOS keyboard.

(6) - Not allowed for vt100 terminals.

KEYCODES AND KEY LABELS

Allowed in ON Statement Allowed in ON Statement
Key Code Key Label or GO-ON Phrase Key Code Key Label or GO-ON Phrase

DOS & 0S/2 | UNIX | vms DOS & OS/2| UNIX | VMS |
341 - 399 F41 - F99 Vv (2) vV 504 CURSOR-LEFT 7 V (2) Vv
400 - 499 PFO - PF99 v (2| v 505 HOME v v (2) v
501 CURSOR-UP Vv VvV (2) vV 506 END e v (2) 1
502 CURSOR-DOWN Vv’ V¥ (2) [507 PAGE-UP vV vV (2) 1
503 CURSOR-RIGHT Vv V¥ (2) [508 PAGE-DOWN I vV (2) 1%

509 BACK-TAB Vv’ v (2) VvV

(2) - Only if key is defined in protermcap file. (continued)

Pocket PROGRESS

BTOS/CTOS keycodes can be found in
Chapter 2 of the PROGRAMMING Handbook.

The PROGRESS Keyboard 61

Pocket PROGRESS

KEYCODES AND KEY LABELS

The PROGRESS Keyboard 62

(2) - Only if key is defined in protermcap file.

Allowed in ON Statement Aliowed in ON Statement

Key Code Key Label or GO-ON Phrase Key Code Key Label or GO-ON Phrase
DOS & 0S/2| UNIX VMS DOS & 0S/2| UNIX VvMS

510 INS v (2) [518 LINE-ERASE v (2) v
511 HELP v _(2) v 519 PAGE-ERASE o2 |
512 DEL-CHAR v (2) D 520 CTRL-BREAK v (2) P
513 EXECUTE v (2) [521 CTRL-ALT-DEL v (2) P
514 PAGE v (2) v 522 EXIT v 2| v
515 FIND v (2) P 523 CTRL-RIGHT V v (2) VvV
516 INS-LINE v (2) 14 524 CTRL-LEFT v v (2) v
Al DEL-LINE ¥ 2 al BTOS/CTOS keycodes can be found in (continued)

Chapter 2 of the PROGRAMMING Handbook.

KEYCODES AND KEY LABELS

(2) - Only if key is defined in protermcap file.

Pocket PROGRESS

Allowed in ON Statement Allowed in ON Statement
Key Code Key Label or GO-ON Phrase Key Code Key Label or GO-ON Phrase
DOS & 0S/2| UNIX VMS DOS & 0S/2| UNIX VMS |
525 u1 v _(2) v 533 U9 v (2) P
526 U2 v_(2) v 534 u10 v _(2) v
527 U3 v (2) v 535 ERASE v (2) w
528 U4 v (2) [536 WHITE v (2) v
529 us v _(2) v 537 BLUE v (2) v
530 U6 ¥ (2) [538 RED v_(2) [
531 U7 v (2) v 539 RESET v (2) v
532 us ¥ _(2) ol BTOS/CTOS keycodes can be found in (continued)

Chapter 2 of the PROGRAMMING Handbook.

The PROGRESS Keyboard 63

Pocket PROGRESS

KEYCODES AND KEY LABELS

The PROGRESS Keyboard 64

Allowed in ON Statement Allowed in ON Statement

Key Code Key Label or GO-ON Phrase Key Code Key Label or GO-ON Phrase
DOS & 0s/2 | UNIX VMS DOs & 0s/2| UNIX | VMS |

540 ESC-F v _(2) v 548 ESC-7 v (2) v
541 ESC-N v _(2) v 549 ESC-8 v
542 ESC-1 v (2) v 550 ESC-9 v (2) P
543 ESC-2 v _(2) v 551 ESC-Z v 2y
544 ESC-3 v (2) [552 ESC-LEFT-ARROW v (2) [
545 ESC-4 v_(2) v 553 ESC-UP-ARROW . (2) o
546 ESC-5 v (2) VvV 554 ESC-DOWN-ARROW v (2) v
547 ESC-6 v (2) vV 555 ESC-V v (2) P

(2) - Only if key is defined in protermcap file.

Pocket PROGRESS

ALTERNATE KEY LABELS

Key Code Alternate Key Labels
7 BELL
8 BS
10 LINEFEED, LF
12 FORMFEED, FF
13 RETURN (DOS), ENTER (UNIX), CR
27 ESCAPE
127 CANCEL
501 UP
502 DOWN

(continued)

The PROGRESS Keyboard 65

Pocket PROGRESS

ALTERNATE KEY LABELS

The PROGRESS Keyboard 66

Key Code Alternate Key Labels
503 RIGHT
504 LEFT
505 ESC-H
507 PGUP, PREV-PAGE, PREV-SCRN
508 PGDN, NEXT-PAGE, NEXT-SCRN
509 SHIFT-TAB
510 INSERT, INS-CHAR, INS-C, INSERT-HERE
512 DELETE, DELETE-CHAR, DEL-C
516 INS-L, LINE-INS

517

DEL-L, LINE-DEL

THE PROGRESS LANGUAGE

This section of Pocket PROGRESS contains an alphabetical list of PROGRESS statements, phrases, functions and operators.
Each item is followed by a description of that item and the appropriate PROGRESS syntax.

EXAMPLE:
Statement, Phrase P CREATE Statement CREATE record <& Syntax
Function, or Operator
Description P> Creates a record in a file, setting all
the fields in the record to their
default initial values and moving a
cog?l of that record to a record
buffer.
Pocket PROGRESS

The PROGRESS Language 67

Pocket PROGRESS The PROGRESS Language 68
PROGRESS SYNTAX RULES

- Uppercase words are required keywords. Although they are always shown in uppercase, you can use either uppercase or lowercase when using them in
a procedure.

- Talics identify parameters, or arguments, that you supply.

- End all statements (except for DO, FOR EACH, and REPEAT) with a period. End DO, FOR EACH, and REPEAT
statements with either a period or a colon.

- Parentheses surrounding parameters or arguments indicate that the parentheses () are required as part of the syntax.
- Square brackets indicate that an item is optional, with the exception of array references, where you actually type the square brackets []

- Braces indicate that an item is required, with the exception of include procedures and argument references, where you actually type the braces {}.

- Ellipses (...) indicate that you can choose one or more of the items they follow. If a group of items is enclosed in brackets and is followed by ellipses,
you can optionally choose one or more of those items. If a group of items is enclosed in braces and is followed by ellipses, you must choose one or
more of those items. A comma followed by ellipses (, ...)indicates that you must
place commas between items in a list.

- When you see aggregate-phrase, color-phrase, editing-phrase, format-phrase, frame-phrase or record-phrase in a syntax diagram, refer to the
appropriate page in this section for a description of that phrase.

- Expressions are used in many PROGRESS statements and functions. An expression is a constant, field name, variable name,
or any combination of these.

- Astring is a character constant, enclosed in quotes.

Pocket PROGRESS The PROGRESS Language 69

Pocket PROGRESS The PROGRESS Language 70
PROGRESS SYNTAX SUMMARY

Punctuation
Ends block labels and block header statements
(DO, FOR EACH, REPEAT).

; Special Character
When combined with a second character in the
PROGRESS procedure editor, provides alternative
representations of special PROGRESS characters.

H Punctuation
In PROGRESS Version 6 and later versions, can be used
to terminate statements when -Q is turned on for the session
in which the procedure is compiled. Just like a period.
This disables the use of the semicolon within, for example,
Unix escanes such as “UNIX SMBL = foo: export SMBL”.

Punctuation
Ends all statements including block header
statements and block labels.

, Punctuation
Separates multiple file specifications
(used in FOR EACH statements and PRESELECT
phrases), multiple branching phrases (used in UNDO
statements and phrases), and multiple argument
of a function.

? Special Character
Represents the unknown value.

\ Special Character

An “escape” character (UNIX only). - see also ™ (tilde).
A directory path separator (DOS and OS/2 only).

Pocket PROGRESS The PROGRESS Language 71

Pocket PROGRESS The PROGRESS Language 72

Special Character
An "escape” character that tells PROGRESS to
read the following character literally and not to give
that character special meaning. A tilde followed by
three octal digits represents a single character.

Special Character
Encloses character constants or strings. To use quotes
within a quoted character string, you must either use
two double quotes (" "), which compile to a single double quote (”),
or you must put a tilde (*) in front of any quotes within
the quoted character string.

’

Special Character
The single quote functions exactly as the double quote.
However, if you use both single and double quotes in a statement,
the compiler checks the outermost quotes first,
giving them precedence over the innermost quotes.

! Special Character
A directory path separator (UNIX). Also used for date
fields.

() Expression Precedence
Raises expression precedence. Also, some functions
require you to enclose arguments
in parentheses.

[1 Array Reference
Encloses array subscripts (such as [1], [2], etc.)
or ranges (such as [1 FOR 4]).

Pocket PROGRESS The PROGRESS Language 73

Pocket PROGRESS The PROGRESS Language 74

. argument
{ } Include File {mclua’e file [& argument = “argument-value”] }

If PROGRESS encounters the name of a file enclosed

in braces ({ })when compiling a procedure, it

retrieves the statements in that file and compiles them

as part of the main procedure. You can name

arguments you want to supply to the file before the procedure
is compiled.

1~}

{} Argument Reference { & argument-name }

Refers to an argument being passed by a
calling procedure,or to an argument in an include file.
{*} refers to all arguments being passed.

YES, NO, TRUE, FALSE
Logical Value
Represent values of logical fields or variables.

/* This is a Comment */
Puts explanatory text into a procedure.
PROGRESS ignores text between the characters /* and */.

Pocket PROGRESS The PROGRESS Language 75

Pocket PROGRESS

+ Unary Positive Operator
Preserves the positive or negative value of a
numeric expression.

+ Addition Operator

Adds two numeric expressions.

+ Concatenation Operator

Produces a character value by joining, or
concatenating, two character strings or

expressions.

+ expression

expression + expression

expression + expression

The PROGRESS Language 76

+ Date Addition Operator date + days

Adds a number of days to a date, producing
a date result.

- Unary Negative Operator - expression

Reverses the sign of a numeric

expression.

- Subtraction Operator expression — expression

Subtracts one numeric expression from
another numeric expression.

Pocket PROGRESS The PROGRESS Language 77

Pocket PROGRESS The PROGRESS Language 78

_ : _ 4 days }
Date Subtraction Operator date dare

Subtracts a number of days from a date,
producing a date result, or subtracts one
date from another, producing an integer
result representing the number of days
between two dates.

* Multiplication Operator expression * expression
Multiplies two numeric expressions.

/ Division Operator expression | expression
Divides one numeric expression by another

numeric expression, producing a decimal

result.

= or EQ Operator expression {Eg} expression
Returns a TRUE value if two expressions

are equal.

= Assignment Statement field = expression

Assigns the value of an expression to a
database field or variable.

< or LT Operator expression { L<T}expression

Returns a TRUE value if the first of two
expressions is less than the second

expression.

Pocket PROGRESS The PROGRESS Language 79

Pocket PROGRESS The PROGRESS Language 80

< = or LE Operator expression {I;E=} expression

Returns a TRUE value if the first of two
expressions is less than or equal to the
second expression.

> or GT Operator expression {GI} expression

Returns a TRUE value if the first of two
expressions is greater than the second
expression.

= or GE Operator expression { G=E }expression

Returns a TRUE value if the first of two
expressions is greater than or equal to the

<> or NE Operator expression {§E>}axpression

Compares two expressions and returns a
TRUE value if they are not equal.

ACCUM Function ACCUM aggregate-phrase expression

Returns the value of an aggregate
expression that has been calculated by an
ACCUMULATE or DISPLAY statement.

ACCUMULATE Statement ACCUMULATE { expression (aggregate-phrase)}

Calculates one or more aggregate values of
an expression during the iterations of a
block. Use the ACCUM function to access
the result of this accumulation.

Pocket PROGRESS The PROGRESS Language 81

Pocket PROGRESS The PROGRESS Language 82

Aggregate Phrase AVERAGE
Identifies one or more values to be COUNT
calculated based on a change in an MAXIMUM
expression or break group. MINIMUM
TOTAL
SUB-AVERAGE ~ [BY break-group] .-

SUB-COUNT
SUB-MAXIMUM
SUB-MINIMUM
SUB-TOTAL

ALIAS Function ALIAS (integer-expression)
The ALIAS function returns the alias

corresponding to the integer value of

expression.

ALTER TABLE (SQL) Statement ALTER TABLE table-name [ADD COLUMN column-name datatype)

Adds new columns to a table, deletes col- . .
umns from a table, or changes the format or [FORMAT string] [LABEL string]

labels associated with an existing column. [COLUMN-LABEL string [! string] ...]
[[NOT] CASE-SENSITIVE |

[DEFAULT initial-value]

{ DROP COLUMN column-name }

ALTER COLUMN column-name
[FORMAT string | [LABEL string |
[COLUMN-LABEL string [! string] ...]
[[NOT] CASE-SENSITIVE |

\ [DEFAULT initial-value |

Pocket PROGRESS The PROGRESS Language 83

Pocket PROGRESS The PROGRESS Language 84

AMBIGUOUS Function AMBIGUOUS record
Returns a TRUE value if the last FIND

statement for a particular record found

more than one record that met the index

criteria specified.

AND Operator expression AND expression
Returns a TRUE value if each of two logical

expressions is TRUE.

APPLY Statement APPLY expression

In an EDITING Phrase, performs the
function of a specified integer keyboard key
code. Outside an EDITING Phrase, the
expression you APPLY canrepresent one of
HELP, END-ERROR, ERROR,
ENDKEY, or STOP.

ASC Function

Converts a character expression
representing a single character into its
corresponding ASCII integer value.

ASC (expression)

ASSIGN Statement
Moves data previously placed in

a screen buffer, usually by a ASSIGN{ ﬁegg _ . }
PROMPT-FOR statement, to field = expression
the corresponding fields and

varlables. ASSIGN record [EXCEPT field ...]

AVAILABLE Function

Returns a TRUE value if the named record
buffer contains a record and returns a
FALSE value if the record buffer is empty.

Pocket PROGRESS

AVAILABLE record

The PROGRESS Language 85

Pocket PROGRESS The PROGRESS Language 86
BEGINS Function expression] BEGINS expression2

Tests a character expression to see if that
expression begins with a second character
expression.

BELL Statement BELL

Causes the terminal to “beep” if the
terminal is the current output destination.

BTOS Statement

Runs a program, BTOS command, BTOS submit
file, or start the BTOS executive to allow interacive
processing of BTOS commands.

Pocket PROGRESS

BTOS [SILENT]

btos-command

OS-APPEND file-expression-from file-expression—to
OS-COPY file-expression—from file—expression—to
OS-DELETE filename-expression...

OS-RENAME oldname-expression newname—expression
OS-REQUEST Cd Erc nC nRq nRs C1..Cn Rql..Rqn Rs1..Rsn

[run—file | command [argument]
<run-file [VALUE(e).pression)]
UBMIT submit-file-spec [Pa’amefff”‘liﬂ]

The PROGRESS Language 87

Pocket PROGRESS The PROGRESS Language 88
CALL Statement CALL routine-identifier | argument | ...

Transfers control to a dispatch program
which calls a C routine that you have written
using PROGRESS HLC.

CAN-DO Function CAN-DO (idlist [, string])

Compares the current userid with a list of users
that have permission to access a specified file.
Returns a TRUE value if the userid matchesan
entry in the list. You generally use the CAN-
DO function to do security checking.

) WHERE expression
CAN-FIND Function CAN-FINID [EES?I"I] record [constant] USING field [AND field] - § =)
Returns a TRUE value if a record 8151??1%(11)}3)(index

can be found which meets the
specified FIND criteria. CAN-FIND
does not actually make the record
available to the procedure.

CAPS Function CAPS(expression)

Converts any lowercase letters in a
character string expression to uppercase
letters, and returns the resulting character
string.

Pocket PROGRESS The PROGRESS Language 89

Pocket PROGRESS The PROGRESS Language 90
CHOOSE Statement

Moves a hlilghlight béir almong a CHOOSE ROW feeld

series of choices and selects a choice

when the user either presses RETURN FIELD{ field...[HELP char-constant]}

or enters a unique combination of char-

acters.
AUTO-RETURN
COLOR color-phrase
GO-ON (key-label)... -
KEYS char—van'ab/e [frame-phrase |
NO-ERROR
PAUSE expression

CHR Function CHR (expression)

Converts an ASCII integer value to its
corresponding character value.

CLEAR Statement

Clears the data and colors (and side-labels
for a down frame) displayed in a frame.

CLOSE (SQL) Statement

Closes an open cursor.

Pocket PROGRESS

CLEAR [FRAME frame | [ALL] [NO-PAUSE |

CLOSE cursor-name

The PROGRESS Language 91

The PROGRESS Language 92

Pocket PROGRESS
CO!..OR I.’hrase . NORMAL
Specifies a video attribute or color. INPUT
e fgnd-color and bgnd-color
specifications apply only on DOS. MESSAGES
e protermcap-attribute applies protermcap—attribute
only on UNIX and VMS. dos-hex—attribute
[BLINK- | [BRIGHT] [fgnd-color][/ bgnd-color]
[BLINK-] [RVV-][UNDERLINE- |[BRIGHT-][fgnd-color]
VALUE (expression)
COLOR Statement { [DISPLAY]color-phrase } _
Indicates the video attribute or COLOR PROMPT color-phrase » field - [frame= phrase]

color to use for normal display,
or to use when a field is ready
for data entry.

COMMIT OFF (SQL) Statement COMMIT OFF

Disables the SQL statement

COMMIT WORK and enables the
PROGRESS transaction management
facilities.

COMMIT ON (SQL) Statement COMMIT ON

Enables the SQL Statement

COMMIT WORK and disables the
PROGRESS transaction management
facilities.

COMMIT STATUS (SQL) Statement COMMIT STATUS

Displays a message stating whether the SQL
commit/rollback is enabled or disabled.

Pocket PROGRESS The PROGRESS Language 93

Pocket PROGRESS The PROGRESS Language 94

COMMIT WORK (SQL) Statement COMMIT WORK

Commits all database changes effected by SQL
data manipulation statements since the previous
COMMIT WORK or ROLLBACK work state-
ment on since the beginning of the session.

procedure } ATTR-SPACE]
COMPILE Statement COMPILE VALUE éxpression) [NO-ATTR-SPACE
Complies a procedure. A compilation ™~

lasts for a session (a “session” compile) SAVE[INTO { directory | value(expression)}]
or can be saved permanently for use in
APPEND

a later session (in an “object” or “.r”

' listfile
file). LISHNG{V[G_UE (emression) PAGE-SIZE n

XREF filename [APPEND] PAGE-WIDTH;
XCODE expression
L
CONNECT Statement
Allows access to one or more databases [physical-name]
from within a PROGRESS procedure. CONNE (options] [NO-ERROR]
options

Pocket PROGRESS The PROGRESS Language 95

Pocket PROGRESS The PROGRESS Language 96
CONNECTED Function

Lets you determine whether a database is con- c{logical _name}
nected. If logical name is the logical name oraliasis CONNECTED .)
the alias of a connected database, then the CON- alias

NECTED function returns TRUE; otherwise, it re-

turns FALSE.

COUNT-OF Function COUNT-OF (break-group)

Returns an integer that is the total number
of records in the file or files you are using
for a break group.

CREATE Statement CREATE record

Creates arecord in a file, sets all the fieldsin
the record to their default initial values and
moves a copy of that record to a record
buffer.

CREATE ALIAS Statement CREATE ALIAS alias FOR DATABASE logical name [NO-ERROR].

Creates an alias for a database. The
alias is added to a table of existing
aliases.

CREATE INDEX(SQL) Statement CREATE [UNIQUE] INDEX index-name ON table-name (column-list)

Creates an index.

Pocket PROGRESS The PROGRESS Language 97

Pocket PROGRESS The PROGRESS Language 98

CREATE TABLE (SQL) Statement CREATE TABLE table-name (({{ column-name datatype ‘
Creates a new base table containing the columns [NOT NULL [UNIQUE 1
you specify. [FORMAT string | [LABEL string |

{ [COLUMN-LABEL string [! string] ...] }

[[NOT] CASE-SENSITIVE |
[DEFAULT initial value | }
| { UNIQUE (column-name [,...]) }} [,...])

CREATE VIEW (SQL) Statement)]
Creates a viewed table (view) from one or more CREATE VIEW view-name [(column-list) | AS SELECT-statement

base tables and/or other views. [WITH CHECK OPTION]

CTOS Statement

Runs a program, CTOS command, CTOS submit
file, or starts the CTOS executive to allow interactive
processing of CTOS commands.

Pocket PROGRESS

CTOS [SILENT]

ctos-command

OS-APPEND file-expression—-from file-expression-to
OS-COPY file-expression—from file-expression—to
OS-DELETE filename-expression...

OS-RENAME oldname-expression newname-expression
OS-REQUEST Cd Erc nC nRq nRs C1..Cn Rql..Rqn Rsl..Rsn

[run-file | command [argument]
<run-file [VALUE(expression)]
SUBMIT submit-file-spec [parameter-iist ... "]

The PROGRESS Language 99

Pocket PROGRESS The PROGRESS Language 100

CREATE VIEW (SQL) Statement CREATE VIEW view-name [(column-list) | AS SELECT-statement

Creates a viewed table (view) from one or more
base tables and/or other views.

DATE Function DATE (month, day, year)

Converts three integer values representing
a month, day, and year, into a date. The
year includes the century.

DAY Function DAY (date)

Converts a date to a day of the month
integer value from 1 to 31.

DBNAME Function DBNAME

Returns the physical name of your first
connected database.

DBRESTICTIONS Function . .
Returns a character string that describes fea- DBRESTRICTIONS (integer expression)

tures that are not supported for this database. (1051 cal-name)
(alias)

DBTYPE Function DBTYPE | (integer expression)
Returns the database type of a currently connected (logical-name)
database (“PROGRESS”, “RMS”, “ORACLE", (alias)

etc.) DBTYPE accepts as a parameter either an in-
teger expression or a character expression.

Pocket PROGRESS The PROGRESS Language 101

Pocket PROGRESS The PROGRESS Language 102

DBVERSION Function DBVERSION || (integer expression)
Returns a “5” if a connected database is a Version 5 (logical-name)
dtabase and a “6” if it is a Version 6 database. For (alias)

non-PROGRESS databases, you see the appropri-
ate version number of your database. DBVER-
SION accepts as a parameter either an integer ex-
pression or a character expression.

DECIMAL Function DECIMAL (expression)

Converts an expression of any data type toa
decimal value.

DECLARE CURSOR (SQL) Statement DECLARE cursor-name CURSOR FOR SELECT-statement

Associates a cursor name with a SELECT
statement.

DEFINE BUFFER Statement DEFINE[[NEW] SHARED] BUFFERbuffer FOR file [PRESELECT]

PROGRESS automatically uses one
record buffer per file to store one record at
a time from that file as needed in a given
procedure. The DEFINE BUFFER
statement defines additional buffers for a
file if more than one record at a time is
needed from that file. These buffers can be
SHARED among procedures.

Pocket PROGRESS The PROGRESS Language 103

Pocket PROGRESS

The PROGRESS Language 104
DEFINE PARAMETER Statement

Defines a runtime parameter in a DEFINE gquJ)TUI;FUT PARAMETER parameter
called procedure. Each parameter
require[; one DEFINE statement, and INPUT-OUTPUT,
definitions must match the order in =
which they are passed in a RUN COLUMN-LABEL |[gbel [! label)...
statement. DECIMALS n
AS datatype FORMAT string
LIKE field INITIAL { [constant,..]}
LABEL string
NO-UNDO
]

DEFINE SHARED FRAME Statement

Defines a frame for use within a procedure
or within several procedures.

DEFINE [NEW | SHARED FRAME frame

NEW
DEFINE STREAM Sratement DEFINE [[NEW GLOB Al] SHARED] STREAM stream

Defines a stream other than the
two unnamed streams (the input
and output stream) which are

automatically available.

Pocket PROGRESS The PROGRESS Language 105

Pocket PROGRESS The PROGRESS Language 106

Defines a variable (a temporary
field) for use within a procedure
or within several procedures.

DEFINE VARIABLE Statement
DEFINE [

NEW .
NEW GLOB AL] SHARE]EI VARIABLE variable
=

[NOT]} CASE-SENSITIVE
COLUMN-LABEL label | !label]...
DECIMALS »

AS datatype EXTENT n

LIKE field FORMAT string

INITIAL { [constant ,...]}

LABEL string

NO-UNDO

DEFINE WORKFILE STATEMENT DEFINE [[NEW | SHARED]| WORKFILE workfile-name [NO-UNDO]
Defines a work file (a temporary database

file) for use within a procedure or
within several procedures. [LIKE file-name]

FIELD field-name -

[NOT] CASE-SENSITIVE
AS datatype} COLUMN-LABEL /abelf !label]..
LIKE field DECIMALS n

EXTENTn

FORMAT string

INITIAL { [constant,...] }

LABEL string

Pocket PROGRESS The PROGRESS Language 107

Pocket PROGRESS The PROGRESS Language 108

DELETE Statement
Removes a record from a record buffer and
from the database.

DELETE record [VALIDATE (condition, msg-expression) |

DELETE ALIAS Statement DELETE ALIAS alias

Deletes an alias from the alias table.

DELETE FROM (SQL) Statement DELETE FROM table-name | WHERE { search-condition |
{ CURRENT OF cursor-name }}]

Deletes one or more rows from a table.

DICTIONARY Statement DICTIONARY

Runs the PROGRESS Data
Dictionary.

DISCONNECT Statement DISCONNECT logical-name

Disconnects the specified database.

Pocket PROGRESS The PROGRESS Language 109

Pocket PROGRESS

DISPLAY Statement

Moves data to a screen buffer,
displaying that data on the screen

or at a designated output destination.

The PROGRESS Language 110

DISPLAY [STREAM stream |

expression | format-phrase]
[WHEN expression]

[(aggregate-phrase)]

) FORMAT string ... @base—
expression [WHEN expression] base—field

[format-phrase |

SPACE [(n)]
SKIP[(n)]

[frame-phrase |

DISPLAY [STREAM stream] record [EXCEPT field..] | frame-phrase |

DO Statement

Groups statements into a single
block, optionally specifying

various processing services, .
or blockppropeni%s. [FORrecord [,record] -]

[label: 1 DO

PRESELECT [EACH] record-phrase
[, LEACH] record-phrase]

[(BREAK |{BYexpression [DESCENDING }} - |

[variable = expression] =~ TO expression2 [BY k]]
[WHILE expression]
[TRANSACTION |

[ON ENDKEY-phrase]
[ON ERROR—phrase]
[frame-phrase |

Pocket PROGRESS The PROGRESS Language 111

Pocket PROGRESS The PROGRESS Language 112

DOS Statement DOS [SILENT] [dos—command argument]]

Runs a program, DOS command, . .
or DOS batch file, or starts the VALUE(expression) VALUE(expression)

DOS command processor, allowing
interactive processing of DOS
commands. A procedure containing
the DOS statement will run on a UNIX
system only if flow of control does not
pass through that DOS statement.

DOWN Statement DOWN [STREAM stream | [expression] [frame-phrase |

Explicitly positions to a new line in a Down
or multi-line frame. Moves down if the
expression is positive, up if the expression is
negative.

DROP INDEX (SQL) Statement DROP INDEX index-name

Removes an index.

DROP TABLE (SQL) Statement DROP TABLE table-name
Removes a table from the database. It also removes

all indexes defined on that table and all access privi-

leges, as well as all data.

DROP VIEW (SQL) Statement DROP VIEW view-name

Removes a view from the database.

Pocket PROGRESS The PROGRESS Language 113

Pocket PROGRESS The PROGRESS Language 114
EDITING Phrase [label :]| EDITING: statement... END.

Identifies the processing to take place
following each keystroke during a
PROMPT-FOR, SET, or UPDATE

statement.

ENCODE Function ENCODE (expression)
Encodes a source string to an encoded

string.

END Statement END

Indicates the end of a block started with a
DO, FOR EACH, or REPEAT statement,
or with an EDITING Phrase.

ENTERED Function [FRAME frame | field ENTERED
Returns a TRUE value if a frame field was

modified during the last INSERT,

PROMPT-FOR, SET, or UPDATE

statement which used the field.

ENTRY Function ENTRY (element, list)
Returns a character string entry from a list,

based on a specified integer position.

Separate multiple entries in the list with

commas. ENTRY raises the ERROR

condition if the value of the element does

not correspond to the entry.

EQ or = Operator expression {59} expression

Returns a TRUE value if two expressions
are equal.

Pocket PROGRESS The PROGRESS Language 115

Pocket PROGRESS
EXP Function

Returns a value resulting from raising a
number (base) to a power (exponent).

The PROGRESS Language 116
EXP(base,exponent)

EXPORT Statement EXPORT [STREAM stream | Jexpression

Converts data to a standard record [EXCEPT field ...]
character format for display

to an output destination.

FET.CH (SQL) Statement . FETCH cursor-name INTO variable-list
Retrieves the next row from the retrieval set

accessed by the OPEN statement.

FILL Function FILL (expression, repeats)

Generates a character string made up of a
character string expression repeated a
specified number of times.

FIRST

FIND Statement FINDJ| LAST record-phrase [NO-WAIT] [NO-ERROR]
Uses an index to locate a single NEXT
record in a file and moves the PREV

record into a record buffer.

Pocket PROGRESS The PROGRESS Language 117

Pocket PROGRESS The PROGRESS Language 118
FIRST Function FIRST(break-group)

Returns a TRUE value if the current
iteration of a DO, FOR EACH, or
REPEAT ... BREAK block is the first
iteration of that block.

FIRST-OF Function FIRST-OF (break-group)
Returns a TRUE value if the current

iteration of a DO, FOR EACH, or

REPEAT ... BREAK block is the first

iteration for a new break-group.

EACH EACH
FOR Statement [label:] FOR| FIRST | record-phrase)] FIRST | record-phrase
LAST LAST

Starts an iterating block that, at the
start of each block iteration, reads a

record from each of one or more files
into record buffers.

[(BREAK | { BY expression [DESCENDING 1} |
]

[variable = expression] ~ TO expression2 [BY k]

[WHILE expression]
[TRANSACTION]

[ON ENDKEY-phrase]

[frame-phrase |

Pocket PROGRESS The PROGRESS Language 119

Pocket PROGRESS The PROGRESS Language 120
FORM Statement

Defines the layout and certain processing field [format-phrase |
attributes of a frame. constant AT n
FORM TOn
SPACE[(n)]
SKIP[(n)]
AT n
expression TOn
HEADE FORMATFtring « Q[frame-phrase)
SPACE[()]
SKIP[(n)]

FORM record [EXCEPT field ...) [frame-phrase |

FORMAT Phrase

; : ATn
Specifies one or more frame attributes
fgrc a field, variable, or expression. AS datatype
ATTR-SPACE

AUTO-RETURN

BLANK

COLONn

COLUMN-LABEL label [! label |..
DEBLANK |

FORMAT string

HELP string

LABEL string

LIKE field

NO-A -SPACE

NO-LABEL

TOn »

VALIDATE (condition, msg-expression)

Pocket PROGRESS The PROGRESS Language 121

Pocket PROGRESS The PROGRESS Language 122

FRAME Phrase ACCUM

Specifies the overall layout or ATTR-SPACE
rocessing properties of a frame.
hen userdion block header statements CENTERED

(DO, FOR EACH, and REPEAT), the Frame
phrase also specifies the default frame for

DISPLAY | color-phrase
data handlinistalemems (DISPLAY, COLOR{ [] P }

SET, etc) within the block. Frame phrases PROMPT color-phrase

can also be used on individual statements .

to indicate the specific frame to which COLUMN expression OVERLAY

the statement applies. n COLUMNS PAGE-BOTTOM
DOWN _

WITH expression DOWN EA}‘E(’;{EI ;C,),P

FRAME frame ROW expression
NO-ATTR-SPACE SCROLL n
NO-BOX SIDE-LABELS
NO-HIDE TITLE [COLOR color-phrase | expression
NO-LABELS TOP-ONLY
NO-UNDERLINE .

NO-VALIDATE WIDTHn

FRAME-COL Function FRAME-COL [(frame)]

Returns an integer value that represents
the column position of the upper left corner
of a frame.

FRAME-DB Function FRAME-DB

Returns the database name for the field in
which the cursor was last positioned for
input.

FRAME-DOWN Function FRAME-DOWN | (frame) |

Returns an integer value that represents the
number of interations in a frame.

FRAME-FIELD Function FRAME-FIELD

During a data entry statement, returns the
name of the input field the cursor is in. At
other times, returns the name of the input
field the cursor was last in.

Pocket PROGRESS The PROGRESS Language 123

Pocket PROGRESS The PROGRESS Language 124
FRAME-FILE Function FRAME-FILE

During a data entry statement, returns the
name of the file containing the field the
cursor is in. At other times, returns the
name of the file containing the field the
cursor was last in.

FRAME-INDEX Function FRAME-INDEX

During a data entry statement, returns the
subscript of the array element of the input
field to which the cursor is currently
positioned. At other times, returns the
subscript of the array element to which the
cursor was last positioned.

FRAME-LINE Function FRAME-LINE [(frame) |
Returns an integer value that represents the

current logical line number in a down

frame.

FRAME-NAME Function FRAME-NAME

Returns the name of the frame, if the cursor
was last positioned to a field that is enabled
for input.

FRAME-ROW Function FRAME-ROW [(frame) |

Returns an integer value that represents the
row position of the upperleft corner of a
frame.

FRAME-VALUE Function FRAME-VALUE

During a data entry statement, returns the
value of the input field the cursor isin. At
other times, returns the value of the input
field the cursor was last in.

FRAME-VALUE Statement FRAME-VALUE = expression

During a data entry statement, stores the
value of an expression in a frame field.

Pocket PROGRESS The PROGRESS Language 125

Pocket PROGRESS The PROGRESS Language 126
GATEWAYS Function GATEWAYS

Returns a string containing a list of
database types supported by the
PROGRESS product from which it is
executed.

GE or > = Operator expression { (iE:} expression

Returns a TRUE value if the first of two
expressions is greater than or equal to the
second expression.

GETBYTE Function GETBYTE((expression,position)
(RMS, Rdb, and ORACLE only)

Returns the integer value of the specified

byte.

GO-PENDING Function GO-PENDING

Returns a TRUE value if, within an
EDITING Phrase, an APPLY statement
has resulted in a GO action. The GO action
is deferred until the end of the EDITING
Phrase.

GRANT (SQL) Statement GRANT
Allows the owner or any user who holds the { ALL [PRIVILEGES] |
GRANT OPTION on a table or view to grant
privileges on that table or view. { SELECT |
INSERT |
DELETE |

{UPDATE [(column-list)]} [} }
ON table-name TO {grantee-list | PUBLIC} [WITH GRANT OPTION]

Pocket PROGRESS The PROGRESS Language 127

Pocket PROGRESS The PROGRESS Language 128

GT or > Operator expression {GZ} expression

Returns a TRUE value if the first of two
expressions is greater than the second.

HIDE Stat ¢ FRAME frame
Statemnen HIDE [STREAM stream] | MESSAGE] [NO-PAUSE |
Removes a frame from the terminal ALL

screen, or clears the message area,
or clears all frames and messages.

IF ... THEN ... ELSE Function IF condition THEN expressionl ELSE expression2

Evaluates one of two expressions
depending on the value of a specified
condition.

. Statement statement
Makes execution of a statement or a
block of statements conditional. If
the value of the expression followin
the IF statement is TRUE, PROGRESS
processes the statement following
the THEN statement. Otherwise.
PROGRESS processes the statements
following the ELSE statement.

IF .. THEN .. ELSE Statement IF expression THEN4 block } [ELSE block }]

IMPORT Statement IMPORT [STREAM strear]
The IMPORT Statement is the counterpart of

the EXPORT statement. It reads a line from

an inputfile that, typically, hasbeen created by

EXPORT. No format restrictions apply.

fields
record [EXCEPT field ...]
[7]

Pocket PROGRESS The PROGRESS Language 129

Pocket PROGRESS The PROGRESS Language 130
INDEX Function INDEX(source, target)

Returns an integer value indicating the
position of the target string within the
source string.

INPUT Function INPUT [FRAME frame | field
References the value of a field in a screen

buffer (frame).

INPUT CLEAR Statement INPUT CLEAR

Clears any keystrokes buffered from the
keyboard, discarding any “type-ahead”
characters.

INPUT CLOSE Statement INPUT [STREAM stream | CLOSE

Closes the default input source or the
stream you name.

INPUT FROM Statement

Specifies a new input source.

INPUT THROUGH Statement

Uses the output from a UNIX program
as the mput to a PROGRESS

procedure

Pocket PROGRESS

INPUT [STREAM stream]| FROM

opsys—file
opsys—device IE\}I:OI’EgCHO
TERMINAL UNBUFFERED
VALUE(expression) MAP protermcap—entry
[NO-fMAP

INPUT [STREAMstream | THROUGH

{

program-name
VALUE(expression)

|

rgument
ALUE(expression)

ECHO
NO-ECHO
UNBUFFERED

MAP protermcap—entry
[NO-] MAP

The PROGRESS Language 131

Pocket PROGRESS The PROGRESS Language 132
INPUT-OUTPUT CLOSE Statement INPUT-OUTPUT [STREAM stream | CLOSE

Closes a specified or default stream opened
by an INPUT-OUTPUT THROUGH
statement.

INPUT-OUTPUT THROUGH Statement INPUT-OUTPUT [STREAM strean | THROUGH
Names a UNIX gwro ram (process)

that PROGRESS will start. This process
becomes the input source as wcll;z)as the program-name . argument . I%(C)IjSCHO
output destination for the procedure. VALUE(expression) VALUE((expresston) NBUFFERED
A procedure containing the INPUT- UNBU
OUTPUT THROUGH statement will run MAP protermcap-entry|
on a DOS or VMS machine only if flow [NO-] MAP
of control does not pass through that
statement.
INSERT Statement INSERT record [EXCEPT field ... | [frame-phrase] [USING RECID (n)]

Creates a new database record, displays the
initial values for the fields in the record,
prompts for values of those fields, and
assigns those values to the record.

INSERT INTO (SQL) Statement

Adds new rows to a table.

INSERT INTO table-name | (column-list)| { VALUES (value-list) | SELECT-statement }

INTEGER Function INTEGER(expression)

Converts an expression of any data type to
an integer value, rounding that value if
necessary.

IS-ATTR-SPACE Function IS-ATTR-SPACE

Returns a logical value that indicates if the
current terminal type is spacetaking or
non-spacetaking. Returns a value of Yes if
the terminal is spacetaking, or a value of No
if the terminal is non-spacetaking.

Pocket PROGRESS The PROGRESS Language 133

Pocket PROGRESS The PROGRESS Language 134

KBLABEL Function KBLABEL (key-function)

Returns the keyboard label (such as F1) of
the primary key that performs a specified
PROGRESS function (such as GO). See
“The PROGRESS Keyboard” section for a
list of key functions and the corresponding
standard keyboard keys.

KEYCODE Function KEYCODE (key-label)

Evaluates the key-label (such as F1) for a
key in the predefined set of keyboard keys
and returns the corresponding integer key
code (such as 301). See “The PROGRESS
Keyboard” section for a list of key codes
and key-labels.

KEYFUNCTION Function KEYFUNCTION(expression)

Evaluates an integer expression (such as
301) and returns a character string that is
the function of the key associated with that
integer expression (such as GO). See “The
PROGRESS Keyboard” section for a list of
key functions.

KEYLABEL Function KEYLABEL (key-code)

Evaluates a key-code (such as 301) and
returns a character string that is the
predefined keyboard label for that key
(such as F1). See “The PROGRESS
Keyboard™ section for a list of key codes
and key labels.

KEYWORD Function KEYWORD (expression)

Returns a character value indicating
whether the supplied string is a
PROGRESS keyword.

Pocket PROGRESS The PROGRESS Language 135

Pocket PROGRESS The PROGRESS Language 136

LAST Function LAST (break-group)
Returns a TRUE value if the current

iteration of a DO, FOR EACH, or

REPEAT ... BREAK block is the last

iteration of that block.

LASTKEY Function LASTKEY

Returns the integer key code of the most
recent key pressed during an interaction
with a procedure.

LAST-OF Function LAST-OF (break-group)
Returns a TRUE value if the current

iteration of a DO, FOR EACH, or

REPEAT ... BREAK block is the last

iteration for a particular value of a break

group.

LC Function LC (string)

Returns a character string identical to a
specified string, but with any uppercase
letters in that string converted to lowercase.

LDBNAME Function (integer—expression)
Returns the logical name of a LDBNAME (loglcal—name)
currently connected database. (alias)

LE or <= Operator expression {12E= } expression

Returns a TRUE value if the first of two
expressions is less than or equal to the
second.

Pocket PROGRESS The PROGRESS Language 137

Pocket PROGRESS The PROGRESS Language 138
LEAVE Statement LEAVE [label]

Exits from a block. Execution continues
with the first statement after the end of the
block.

LENGTH Function LENGTH (string)

Returns the length of a character string.

LENGTH Function LENGTH (expression)
(RMS, Rdb, and ORACLE only)

Returns the number of bytes in a raw
datatype expression.

LENGTH Statement LENGTH (variable) = integer expression
(RMS, Rdb, and ORACLE only)

Changes the number of bytes in a raw data
type variable.

LIBRARY Function LIBRARY (string)

Parses a character string in the form
path-name < < member-name > >, where
path-name is the pathname of a library and
member-name is the name of a file within
the library, and returns the name of the
library. The brackets < < > > indicate
that member-name is a file in a library. If
the string is not in this form, the LIBRARY

function returns an unknown value (?).

Pocket PROGRESS The PROGRESS Language 139

Pocket PROGRESS The PROGRESS Language 140
LINE-COUNTER Function LINE-COUNTER] (stream)]

Returns the current line number of paged
output. Returns zero if the current output
is not paged.

LOCKED Function LOCKED record

Returns a TRUE value if, because another
user has locked a record, that record was
not available to a prior FIND...NO-WAIT
statement.

LOG Function LOG (expression [,base |)

Calculates the logarithm of an expression
using a specifed base.

LOOKUP Function LOOKUP(expression,list)

Returns an integer giving the position of a
character expression in a list. Each entryin
the list is separated from the next by a
comma. Returns O if the expression is not
found.

LT or < Operator expression { ET } expression

Returns a TRUE value if the first of two
expressions is less than the second.

Pocket PROGRESS The PROGRESS Language 141

Pocket PROGRESS The PROGRESS Language 142
MATCHES Function expression MATCHES pattern

Compares a character expression to a
pattern and returns a TRUE value if the
expression satisfies the pattern criteria. Use
an asterisk (*) in the pattern to match 0 or
more characters and a period (.) to match
exactly one character.

MAXIMUM Function MAXIMUM(expressionl, expression2)

Compares two values (expressions) and
returns the larger of the two values.

MEMBER Function MEMBERC(string)

Parses a character string in the form
path-name<<member-name>> , where
path-name is the pathname of a library and
member-name is the name of a file within
the library, and returns member-name.
The brackets << >> indicate that
member-name is a file in a library. If the
string is not in this form, the MEMBER
function returns an unknown value (?).

MESSAGE Statement MESSAGE [COLOR color-phrase | | expression | -..
Displ in th

area at the bottom of the terminal SET fieta | EORMAT string
screen. UPDATE [/% AUTO-RETUR

Pocket PROGRESS The PROGRESS Language 143

Pocket PROGRESS The PROGRESS Language 144
MESSAGE-LINES Function MESSAGE-LINES

Returns the number of lines in the message
area at the bottom of the terminal screen.
(Always returns 2).

MINIMUM Function MINIMUM(expressionl, expression2)

Compares two values (expressions) and
returns the smaller of the two values.

MODULO Function expression MODULO base

Returns the remainder after division.

MONTH Function MONTH (date)

Returns the month value (from 1 to 12) of a
date you specify.

NE or <> Operator expression {EE} expression

Compares two expressions and returns a
TRUE value if they are not equal.

NEW Function NEW record

Checks a record buffer and returns a
TRUE value if the record in that buffer was
newly created. If the record was read from
the database, NEW returns a FALSE value.

Pocket PROGRESS The PROGRESS Language 145

Pocket PROGRESS The PROGRESS Language 146

NEXT Statement NEXT [label]

Goes directly to the END of an iterating
block and starts the next iteration of the
block.

NEXT-PROMPT Statement NEXT-PROMPT field [frame-phrase |

The NEXT-PROMPT statement specifies
which field to first position the cursor on
during the next input operation involving
that frame field.

NOT Function NOT expression

Return TRUE if an expression is false and
FALSE if an expression is true.

NOT ENTERED Function field NOT ENTERED
Returns a TRUE value if a frame field was

not modified during the last INSERT,

PROMPT-FOR, SET, or UPDATE

statement which used the field.

NUM-ALIASES Function NUM-ALIASES

Returns an integer value representing
the number of aliases defined.
The NUM-ALIASES function takes no

arguments.

NUM-DBS Function NUM-DBS

Returns the number of connected

databases.

NUM-ENTRIES Function NUM-ENTRIES (string-expression)

Returns the number of items in a
comma-separated list of strings. See also
the ENTRY function.

Pocket PROGRESS The PROGRESS Language 147

Pocket PROGRESS The PROGRESS Language 148
ON Statement ON key-label key-function

Indicates the action to be taken when the
user presses a special key (such as F1) in
response to an INSERT, PROMPT-FOR,
SET, or UPDATE statement, or when the
procedure pauses (either PROGRESS has
encountered a PAUSE statement or is
pausing because the screen is full). If the
input request comes from a READKEY
statement, the action specified by the ON
statement is not taken. See “The
PROGRESS Keyboard” section for a list of
key labels and key functions.

, LEAVE [label2]

ON ENDKEY Phrase ON ENDKEY UNDOJ labell] | 'NEXT | label2]
Describes the processsing that takes RETRY [label2]
Ik hen the ENDKE dit ’

gc"c(i::rswdsgngz block. Thiiczs%nldli(l)i[l)n , RETURN

usually occurs when a user presses
the keyboard ENDKEY during the first
interaction of a block iteration.

, LEAVE [[abel2]

ON ERROR Phrase ON ERROR UNDOJ labell | § NEXT [label2]
Describes the processing that takes , RETRY [label2]
plalce \:hen there is an error during , RETURN

a block.

OPEN (SQL) Statement

Selects the retrieval set from the execution
of the SELECT clause in a DECLARE
CURSOR statement.

OPEN cursor-name

Pocket PROGRESS The PROGRESS Language 149

Pocket PROGRESS The PROGRESS Language 150

OPSYS Function OPSYS

Returns a value of MSDOS, UNIX, OS2,
or VMS, depending on the operating
system on which you are running
PROGRESS.

OR Function expression OR expression

Returns a TRUE value if either of two
logical expressions is TRUE.

l?u?lfa pf(t)gl{:geggﬂ command 0s2 [SILENT] 0s2-command . argument .]
0S/2 batch file, or starts the OS/2 command VALUE (express:on) VALUE (express:on)

processor, allowing interactive processing of
0S/2 commands.

OUTPUT CLOSE Statement OUTPUT [STREAM stream | CLOSE

Closes the default output destination or the
output stream you name with the
STREAM keyword.

OUTPUT THROUGH Statement OUTPUT [STREAM stream | THROUGH

. - PAGED
Identifies a new output destination as PAGE-SIZEn
the (u)n(;;);tﬁtgsa Uﬁu prc:css thac; { program-name argument ECH O_
PR will start. A procedure VALUE(expression VALUE(expression) |
containing the OUTPUT THROUGH (e) (exp) NO-ECHO
statementlwilfl i|:lun or} a DOSI (‘)jr VMS UNBUFFERED

stem only if flow of control does "

;{)l pass th);'ough that statement. [NO-] MAP

Pocket PROGRESS The PROGRESS Language 151

Pocket PROGRESS
OUTPUT TOStatement

Specifies a new output destination.

OVERLAY Function

Overlays a character expression in a field or
variable starting at a given position, and
optionally for a given length.

OUTPUT [STREAMstream] TO

PRINTER

opsys—file
opsys—device
TERMINAL
VALUE(expression)

The PROGRESS Language 152

PAGED

PAGE-SIZE expression
APPEND

ECHO

NO-ECHO

UNBUFFERED

[NO-] MAP protermcap—entry

OVERLAY (target, position [,length]) = expresssion

PAGE Statement PAGE [STREAM stream |

Starts a new output page for PAGED
output. No action is taken if output is
already positioned at the beginning of a

page.

PAGE-NUMBER Function PAGE-NUMBER [(stream) |

Returns the page number of an output
destination. If the output stream is not
paged, returns a value of 0.

PAGE-SIZE Function PAGE-SIZE [(stream)]

Returns the page size (lines per page) of an
output destination. If the output stream is
not paged, PAGE-SIZE returns a value of
0.

Pocket PROGRESS The PROGRESS Language 153

Pocket PROGRESS The PROGRESS Language 154

PAUSE Statement PAUSE [n][BEFORE-HIDE][%8§§&C§I§Argeésage]

Suspends processsing indefinitely, or for a
specified number of seconds, or until the
user presses any key. Specifying
BEFORE-HIDE controls the pause
duration and message before frames are
automatically hidden.

PDBNAME Function (integer—expression)
Returns the physical name of a currentlly con- PDBNAME (Iogical‘”ame)
nected database. (alias)
PROGRAM-NAME Function PROGRAM-NAME(n)

Returns the name of the calling program.

PROGRESS Function PROGRESS

Returns one of the following character
values identifying the PROGRESS product
that is running: PROGRESS 4GL/RDBMS
(Full), Query/Run-Time, Run-Time.
Can also return COMPILE if you are using
the developer’s toolkit, or
COMPILE-ENCRYPT if you are using the
run-timer compiler.

Pocket PROGRESS The PROGRESS Language 155

Pocket PROGRESS The PROGRESS Language 156

PROMPT-FOR Statement

Requests input and places PROMPT-FOR [STREAMstream]

that ing;ut in the screen buffer

(frame). field | format-phrase || WHEN expression]
TEXT (field |format-phrase)] ...)

AT n
constant [TO n
\

SPACE[(n)]
SKIP[(n)]

[GO-ON (key-label ...)]
[frame-phrase]

[EDITING-phrase]
PROMPT-FOR [STREAMstream) record [EXCEPT field ...] [frame-phrase |

PROPATH Statement

Sets the PROPATH environment
variable for the current PROGRESS
session only (new PROPATH not
inherited by any subprocesses).

PROPATH s=string—expression

PROPATH Function

Returns a comma-separated list
of the directory paths in the
PROPATH environment variable.

PROPATH

Pocket PROGRESS The PROGRESS Language 157

Pocket PROGRESS The PROGRESS Language 158

PUT Statement

Sends the value of one or more
exEressmns to an output destination
ot

er than the terminal. .
expression [F ORMAT expression]

PUT [STREAM stream] [UNFORMATTED)]

AT expression
TO expression

SKIP[(expression)]
SPACE[(expression)]

PUT [STREAM stream] CONTROL expression ...

PUT CURSOR Statement -

O
Makes the cursor visible on the screen.
PUT CURSOR { ROW expression }
COLUMN expression

PUTBYTE Function PUTBYTE(variable,position) = expression
(RMS, Rdb, and ORACLE only)

Replaces a byte in a variable with the
integer value of an expression.

PUT SCREEN Suatement PUT SCREEN AOLORea

Displ haract ion at LORcolor- .
D aracer cxpresion 2 COLUMNerase |- expression
overlaying any other data that might NO-ATTR-SPACE

be displayed at that location. ;
play ROW expression

Pocket PROGRESS The PROGRESS Language 159

Pocket PROGRESS The PROGRESS Language 160

QUIT Stratement QUIT

Exits from PROGRESS and returns to the
operating sytem.

R-INDEX Function R-INDEX (source, target)

Returns an integer that indicates the
position of the target string within the
source string. In contrast to the index
function, the search is performed from
right to left.

RANDOM Function RANDOM(low, high)

Returns a random integer between two
integers (inclusive).

RAW Function RAW(field[position|,length]])
(RMS, Rdb, and ORACLE only)
Extracts bytes from a field.

RAW Statement RAW(field| position|.length]]) = expression
(RMS, Rdb, and ORACLE only)
Writes bytes to a field.

READKEY Statement READKEY [STREAM stream] | PAUSE n |

Reads one keystroke from an input source
and sets the value of LASTKEY to the
keycode of that keystroke. See “The
PROGRESS Keyboard” section for a list of
key codes.

Pocket PROGRESS The PROGRESS Language 161

Pocket PROGRESS The PROGRESS Language 162
RECID Function RECID(record)

Returns the unique internal identifier of the
database record currently associated with
the record buffer you name.

Record Phrase

Identifies the record to retrieve with record [constant WHERE _expression

a FIND statement, the set of records [] USING [FRAME frame | field [AND field] ...
1o retrieve using a FOR EACH . OF file

statement, or the constraints on the ;

records bemg reselected in a DO or USE-INDEX index

REPEAT block.

SHARE-LOCK
EXCLUSIVE-LOCK
NO-LOCK

RELEASE Statement RELEASE record

Verifies that a record complies with
mandatory field and unique index
definitions, and clears the record from the
buffer, writing it back to the database if it
has been changed. Raises the ERROR
condition if the validation fails.

Pocket PROGRESS The PROGRESS Language 163

Pocket PROGRESS The PROGRESS Language 164
REPEAT Statement

Begins a block that has all of the [label:] REPEAT
automatic properties except
record reading. [FOR record | ., record] -

PRESELECT][EACH]record-phrase
[, LEACH] record-phrase]

[(BREAK | {BY expression [DESCENDING 1} |

[variable = expression] TO expression2 [BY k]]
[WHILEexpression]

[TRANSACTION]

[ON ENDKEY-phrase]

[ON ERROR-phrase |

[frame-phrase |

RETRY Function RETRY

Returns a TRUE value if the current block
is being reprocessed after a previous
UNDO, RETRY.

RETURN Statement RETURN

Leaves the procedure block, returning to
the calling procedure or, if there there was
no calling procedure, to the PROGRESS
editor.

REVOKE (SQL) Statement REVOKE

Allows the owner or any user who holds the {A] | [PRIVILEGES | { SELECT | INSERT | DELETE | {UPDATE [(column-list)] }
GRANT OPTION on a table or view to revoke

privileges on that table or view. L1} }

ON table-name FROM ({ grantee-list | PUBLIC }

Pocket PROGRESS The PROGRESS Language 165

Pocket PROGRESS The PROGRESS Language 166

Discards all database changes effected by SQL data
manipulation statements since the COMMIT
WORK or previous ROLLBACK work statement or
since the beginning of the session.

ROUND Function ROUND(expression, precision)

Rounds a decimal expression to a specified
number of places (precision) after the
decimal point, returning a decimal value.

RUN Statement rund G2 - omy ¥ 1 (parametr parameter) { argument)

Runs (calls)a PROGRESS procedure from
within a procedure.

SCREEN-LINES Function SCREEN-LINES

Returns the number of screen lines you can
use to display frames. This value is three
less than the total display lines available on
the screen.

UP
SCROLL Statement SCROLL [FROM-CURRENT {DOWN][frame-phrase |

Opens a space and moves data in a frame
with multiple rows. Use the SCROLL
Statement to scroll data up or down when
you add or delete a line in a frame (often a
scrolling frame).

Pocket PROGRESS The PROGRESS Language 167

Pocket PROGRESS The PROGRESS Language 168

SDBNAME Function (integer—expression)
For non-PROGRESS databases, the SDBNAME (logical-name)
SDBNAME function returns the logical name (alias)

of the schema holder database. For PROG-
RESS databases, it is equivalent to
LDBNAME.

SEARCH Function SEARCH (opsys-file)

Searches the PROGRESS directory path
(PROPATH) for a file. If the file is in your
working directory, SEARCH returns the
name of that file. If the file is not in your
working directory, SEARCH returns the
fully qualified path name for the file. If
SEARCH does not find the file, it returns
an unknown value (?).

INPUT

SEEK UTP
SEEK Function (rCzZJme ure)

Returns the offset (in bytes) of the file
pointer in an ASCII file. You define a
procedure variable 1o hold the offset value
and later position the file to that offset.

INPUT -

e.lpresswn

EEK t { OUTPUT } }
SEEK Statemen SEEK | STREAM stream J TO© END

Positions the file pointer to a user-defined
offset (in bytes) to an ASCII file. This
statement does not require that the file be
closed and reopened.

Pocket PROGRESS The PROGRESS Language 169

Pocket PROGRESS

SELECT (SQL) Statement

Retrieves and displays data from a table. Refer to
Chapter 15 in the Programming Handbook for de-
tailed information about the SELECT statement.

The PROGRESS Language 170

SELECT] ALL | DISTINCT] { * | column-list } [INTO variable-list]
FROM { table-name [range-variable | } [,...]
[WHERE search-condition)
[GROUP BY column-list |
[HAVING search-condition)
[ORDER BY { { column-name | n'} [ASC | DESC]} [,..]]

SET Statement

Requests input, and then puts the

input data in both the screen buffer SET [STREAM stream |
(frame) and in the specified fields
or variables.

field | format-phrase || WHEN expression]
TEXT(field | format-phrase | ...)
field = expression

AT n
constant [TO n
/\

SPACE[(n)]
SKIP[(n)]

[GO-ON (key-label ...))
[frame-phrase |
[EDITING phrase]

SET [STREAM stream | record [EXCEPT field ...] | frame-phrase]
Pocket PROGRESS

The PROGRESS Language 171

Pocket PROGRESS The PROGRESS Language 172

SETUSERID Function SETUSERID (userid, password |, logical-dbname))

If the userid and password supplied to the
SETUSERID function are in the _User
file, SETUSERID returns a TRUE value
and assigns the userid to the user. If the the
userid is not in the _User file or the
password is incorrect, SETUSERID
returns a FALSE value and does not assign
the userid to the user.

SQRT Function SQRT (expression)
Returns the square root (as a decimal value)
of an expression. If a negative number is
specified, SQRT returns an unknown value

™.

STATUS Statement DEFAULT [expression]

Specifies the text of the expression STATUS

that appears on the bottom “status INpUT| OFF

line” of the terminal screen. expression
STOP Statement STOP

Stops processing a procedure, backs out the
active transaction, and returns to the
start-up procedure or to the PROGRESS
editor.

STRING Function STRING(source | , format])
Converts a value of any data type into a

character value. STRING uses EXPORT

format if you do not supply a format. See

the “Data Formats” section for information

on format syntax.

Pocket PROGRESS The PROGRESS Language 173

Pocket PROGRESS The PROGRESS Language 174
SUBSTRING Function SUBSTRING(source, position [, length |)

Extracts a portion of a character string
from a field or variable, or replaces
characters in a field or variable with an
expression and at a starting point you

specify.

SUBSTRING Statememt SUBSTRING(source, position [, length |) = expression

Replaces characters in a field or variable
with an expression you specify.

TERMINAL Function TERMINAL

Returns the value BW80, COB80, or
MONO, depending on the monitor type, on
DOS and OS/2 systems. Returns the value
of the STERM variable on UNIX systems.
Returns the value of the PROTERM
variable on VMS systems. Returns null in
batch mode on all systems.

TERMINAL Statement TERMINAL =termid
Changes terminal type during program

execution. On UNIX and BTOS/CTOS

systems, change the value of the TERM

environment variable. On VMS systems,

change the value of the PROTERM logical

variable (or TERM if PROTERM has not

been set).

TIME Function TIME

Returns the number of seconds since
midnight (local time). Used with the
STRING function, the time can be
formatted into hours, minutes, and
seconds. See the “Data Formats” section
for information on TIME format.

TODAY Function TODAY

Returns the current system date.

Pocket PROGRESS The PROGRESS Language 175

Pocket PROGRESS The PROGRESS Language 176
TRIM Function TRIM (expression)

Removes leading and trailing spaces in a

character string.

TRUNCATE Function TRUNCATE(expression, precision)
Truncates a decimal expression to a

specified number of places (precision),

returning a decimal value.

UNDERLINE Statement UNDERLINE [STREAM stream | field ... | frame-phrase |
Underlines a field or variable, using the
next display line for the underline.

UNDO Statement , LEAVE [label2]
Backs out all modifications to

> .) UNDQ]J labell |1 | ,NEXT [label2]
fields and bl de d

the current itefation of a block " RETRY | label2]

andtindicates what action to take , RETURN
next.

UNIX Statement UNIX [SILENT]} unix-command argument
Runs a program, UNIX command VALUE(expression) VALUE(expression)

or UNIX script, or starts a UNIX
interactive shell to allow interactive

processing of UNIX commands.

UP Statement UP [STREAM streum | [expression) [frame-phrase |

Explicitly positions to a new line in a down,
or multi-line frame. Moves up if the
expression is positive, down if the
expression is negative.

Pocket PROGRESS The PROGRESS Language 177

Pocket PROGRESS
UPDATE Statement

Displays fields or variables, requests
input, and then puts the input data UPDATE
in both the screen buffer (frame) and

in the specified fields or variables. field [format-phrase || WHEN expression |

TEXT(field [format-phrase | ...)
field = expression

The PROGRESS Language 178

constant [,?(g 71
/\
SPACE[()]

SKIP[(n)]

[GO-ON (key-label ...)]
[frame-phrase]
[EDITING-phrase]

UPDATE record [EXCEPT field ...] [frame-phrase |

UPDATE (SQL) Statement UPDATE table-name
Changes values in one or more rows

o a table SET column-name = expression [, column-name = expression] ...
ol a (g .

[WHERE { search-condition | { CURRENT OFcursor-name }} |

USERID Function USERID [(logical-dbname))

Returns the userid of the current user.

VALIDATE Statement VALIDATE record

Verifies that a record complies with
mandatory field and unique index
definitions. Raises the ERROR condition
if the validation fails.

Pocket PROGRESS The PROGRESS Language 179

Pocket PROGRESS

VIEW Statement

Brings a frame into view or activates the
frame for display at the beginning or end of
a page if it is a PAGE-TOP or
PAGE-BOTTOM frame.

The PROGRESS Language 180
VIEW [STREAM stream | | FRAME frame |

VMS Statement d argument

Runs a program, VMS command VMS [SILENT] [ATTACH| vms-command .]
or VMSpcognmand file, or starts VALUE(expression) VALUE(exp ression)

an interactive VMS command

processor.

WEEKDAY Function WEEKDAY (date)

Evaluates a date expression and returns, as
an integer, the day of the week from 1
(Sunday) to 7 (Saturday) for that date.

YEAR Function YEAR(dute)

Evaluates a date expression and returns the
year value of that date, including the
century.

Pocket PROGRESS The PROGRESS Language 181

Pocket PROGRESS

OPERATOR PRECEDENCE TABLE

Operator Precedence Table 182

Name of Operator Precedence Name of Operator Precedence
- UNARY NEGATIVE 7 (highest) M'ATCHES
+ UNARY POSITIVE LT or <

MODULO LE or <=
/" DIVISION 6 GT or > 4
* MULTIPLICATION GE or >=
~ DATE SUBTRACTION EQ or =
- SUBTRACTION NE <>
+ DATE ADDITION 5 BEGINS
+ CONCATENATION NOT 3
+ ADDITION AND 2

. . OR 1 (lowest)
If an expression contains two operators of equal precedence,

PROGRESS evaluates the expression from left to right. If the operators are not of equal precedence, PROGRESS evaluates the operator of

higher precedence first. Use parentheses to change the default order used to evaluate an expression.

DATA FORMATS

. Syntax to Use When
Data Type Default Display Format Specifying a Notes
Display Format
Using an integer in parentheses
X represents a repetition factor
N for the previous non-fill
A character.
Charact Touse X, N, A,!or9as
aractet x®) ! [(n)] a fill character, you must
9 precede that character with
a tilde (7).
fill character To use (as a fill character after
a non-fill character, you must
precede it with atilde (7).
9../9..19 Month/day/year order is
Date 99/99/99 assumed unless you used the -d
or 9.-9.-9.. parameter when starting
PROGRESs.
Pocket PROGRESS

Data Formats 183

Pocket PROGRESS Data Formats 184
DATA FORMATS (continued)

Syntax to Use Wh
Data Type Default Display Format n g);)e(c)ifyis:g a en Notes

Display Format

Decimal ->>.>>999 Numeric See Numeric Format below.
Integer -> >>>,>>9 Numeric See Numeric Format below.
Logical yes/no [stringl | [/string2) PROGRESS displays stringl

if the value is true, string2
if false. Omitting a
parameter defaults to blanks.

NUMERIC FORMAT

N ©

[stning2]

*

+
9
) (ot][] EEHBEIEEE
(: ' DR

CR
DB

Stringl

String2
Stringl,
allowed.

is any characters except:

plus +
minus -
greater than >
comma ,
letter z (z or Z)
digits 0 - 9
ri%hl parenthesis)
left parenthesis (
asterisk *

period .
has the same limitations as
except the period (.) is

Pocket PROGRESS

Data Formats 185

Pocket PROGRESS Data Formats 186

TIME FORMAT
(Used with the STRING Function)

HH:MM:SS [any-characters] hh:mm:ss [any-characters)

HH:MM [any-characters) hh:mm [any-characters]

Uses 24-hour format unless any-characters contains an A or a.

Example:
STRING(TIME, "HH:MM AM”)

Pocket PROGRESS

DATA HANDLING STATEMENTS AND DATA MOVEMENT

Database Record Screen User
Record Buffer Buffer
ASSIGN <9
CREATE o—>»
DELETE o
DISPLAY o—>»
FIND ————>
FOR EACH o—>»
INSERT o > @ >
<« @ <« @
PROMPT-FOR <0
RELEASE <0
SET <€ o< @
UPDATE ‘_‘_—>‘ °
. SEE——

Data Handling Statements 187

Pocket PROGRESS

STATEMENTS AS BUILDING BLOCKS

INSERT

UPDATE

SET

Data Handling Statements 188

DELETE

CREATE

DISPLAY

PROMPT-FOR

ASSIGN

FIND|

FOR EACH|

RELEASE

Pocket PROGRESS

BLOCK PROPERTIES

REPEAT FOR EACH DO Procedure
PROPERTY | Implicit Explicit Implicit Explicit | Implicit Explicit | Implicit _Explicit
Looping YES WHILE YES WHILE NO WHILE NO NO
TO/BY TO/BY TO/BY
Record NO NO YES RECORD| NO NO NO NO
reading Phrase
Frame YES WITH YES WITH NO WITH YES NO
scoping FRAME FRAME FRAME
Record YES FOR YES NO NO FOR YES NO
scoping
Record NO NO
Preselection NO PRESELECT| NO NO NO PRESELECT
UNDO YES NO YES NO NO TRANS- | YES NO
ACTION
ON
ERROR
(continued)

Block Properties 189

Pocket PROGRESS

BLOCK PROPERTIES

REPEAT FOR EACH DO Procedure

PROPERTY Implicit Explicit Implicit Explicit | Implicit Explicit | Implicit Explicit
ERROR YES ON YES ON NO ON YES NO
processing ERROR ERROR ERROR
ENDKEY YES ON YES ON NO ON YES NO
processing ENDKEY ENDKEY ENDKEY
System YES TRANS- | YES TRANS- | NO TRANS- YES NO
Transaction ACTION ACTION ACTION

ON

ERROR*

(*) Only if DO block contains database updates or reads with exclusive locks.

Block Properties 190

PROGRESS MASTER INDEX

This master index is designed to help you locate infor-
mation in the following PROGRESS manuals. The ab-
breviation following each manual title is the index ref-

erences.

PROGRESS Test Drive

PROGRESS Language Tutorial

Programming Handbook

PROGRESS Language Reference

System Administration I: Environments

System Administration II: General

Using the Developer’s Toolkit

Database Gateways

3GL Interface Manual

Pocket PROGRESS

TUT

HND

REF

SAI

SATI

TK

DG

3GL

PK

A

Activities file, HND 13

Active database, TUT 3

After-image file (.ai), SA I 1,7

Aliases, HND 13

ALIAS function, REF

ALTER TABLE (SQL) statement, REF
Aggregate phrase (TOTAL), TUT 12; REF
AMBIGUOUS function, TUT 10; REF
applhelp.p procedure, TUT 15; HND 3

Application, TUT 1
databases, HND 3
debugging, HND 14
design, TUT S, 7
distributing, TUT 16; TK 3; 8
implementation steps, TUT 16
packaging, TUT 16
multi-user, HND 12
security, HND 11, SA II §
starting with scripts, TK 6
testing, HND 14; TK 8
transporting, HND 14, TK 7
upgrading, TK 9
user access, TUT 16

APPLY statement, HND 6; REF

Arrays, TUT 10; HND 3

AS option, DEFINE VARIABLE statement, TUT 10; REF
ASSIGN statement, TUT 8; REF

ATTR-SPACE option, Frame phrase, HND 7 REF; TK §
Audit trails. See Transactions

Auto-Connect, SA 11 2

AUTO-RETURN option
SET statement, TUT 11; REF
UPDATE statement, TUT 6; REF

AVAILABLE function, TUT 10; REF

Backing up a database, SA 1I 4

Batch jobs, SA 11 2,3

Before-image file (.bi), HND 8; SA II 1,7
Blank userid, HND 11

Blocks, TUT 4; HND 8, 5

Break groups, TUT 12; HND 10

BREAK option, FOR EACH statement, TUT 12; REF
Broker, SA II Appendix C, 2

BTOS/CTOS concepts, SA I 4

BTOS/CTOS, customizing for PROGRESS, SA 1 4
Buffers, TUT 8, 9; SA 11 1,3,B,C

Building PROGRESS executables, 3GL 1

BY option, FOR EACH statement, TUT 4, 9; REF

(o

CAN-DO function, HND 11; SA II 5; REF

CENTERED option
DISPLAY statement, TUT 11; REF
FORM statement, TUT 6; REF

Character constant, TUT 10
Character data type, TUT 5; HND 4
Character set, HND 2

CHOOSE statement, HND 7; REF

Client(s)
local, SA 1I 2,3, Appendix C
remote, SA II 2,3, Appendix C

C entry points, 3GL 13

COBOL entry points, 3GL 15

COLON option, UPDATE statement, TUT 11; REF

Color in screen displays, TUT 11

COLOR MESSAGES option, DISPLAY statement, TUT 11; REF
COLOR statement TUT 11; REF

Column. See Field.

Column labels, TUT 5, 9; HND 7

COLUMN-LABEL option, TUT 10

Command(s)
BTOS/CTOS, SA 14
DOS,SA 11
UNIX, SA 12
VMS,SA 13
for copying databases, SA II 2
for creating an empty database,
SAII 2
for deleting databases, SA II 2
for removing log file entries, SA 1I 4
for starting PROGRESS, TUT 1; SA 11 2
procedure for starting an application, TUT 16
proutil, SAII 4, 7

Command line piping, for UNIX, SA 11
Comments in procedures, TUT 4

Comparing character strings, TUT 9
COMPILE statement, TUT 13; HND 11; REF
Compiler limits, SA II 1

Compiling procedures, TUT 13;
HND 11

Compound statements, TUT 8

Concatenate operator (+), TUT 10; REF
Conditional processing, TUT 8

CONNECT statement, HND 13; REF; DG 2, 4
Connected database, TUT 3; HND 13; DG 2, 4
Connecting databases, HND 13; DG 2, 4
Connection overhead, HND 13

Connection parameters, HND 13

Constants, TUT 10

Continuation lines in the editor, TUT 2

Control break reports, TUT 12;
HND 10

Converting
databases, SA Il 4,6
data, TUT 10
Copying
data definitions, HND 3; SA Il 4
databases, SA 11 2

demo database, TUT 4
files, HND 3

CREATE statement, TUT 8; REF
CREATE ALIAS statement, HND 13; REF

Creating
databases, TUT 1; SA 11 2,6
fields, TUT 5; HND 3
files, TUT 5; HND 3
indexes, TUT 5; HND 3

cron, SAT1
Cross-tab reports, HND 10

D

Data definitions
changing, TUT 3, 5; HND 3
creating, TUT 5§
dumping and loading, SA II 4

Data Dictionary, TUT 1, 3, §
accessing, TUT 3
accessing in Help procedure, TUT 15
changing definitions, TUT 3; HND 3
changing your password, HND 11
defining files, fields and indexes, TUT 3, §
defining access permissions, HND 11; SAII §; TK 5
dumping and loading data, SA II 4
for Query/Run-Time PROGRESS, TUT 5
help line, TUT 3
moving around in, TUT 3
using the data exchange facility, SA II 4

Data movement, TUT 8; HND 1
Data types, TUT 5; HND 4

Database(s)
active, TUT 3
backing up, SA II 4
concepts, TUT 1; HND 1
creating, TUT 1; SA 11 2, 6; TK 7
disk usage, SAII 1, 4
dumping and loading, SA II 4
files, SAII 1
limits, SAII' 1
multi-volume, SA 11 6
restoring, SA 11 4, 7
restricting access, TK 7
security, HND 11; SAII 5; TK 3, 5
status, TK 7
stopping the server, SA Il 2; SA16
transporting, HND 14; TK 7

Database gateways, HND 13; DG 1, 2, 4
Database records, sharing, HND 12
Database types, HND 13; DG 2, 4

Data Definition Language, HND 15

Date arithmetic, TUT 10

Date data type, TUT 5; HND 4

DBRESTRICTIONS function, HND 13; REF; DG 2, 4
DBTYPE function, HND 13; REF

DBVERSION function, HND 13; REF; DG 2
Debugging applications, HND 14

Decimal data type, TUT 5; HND 2

DECnet networks, SA 1 8

DEFINE BUFFER statement, TUT 10, REF
DEFINE SHARED FRAME statement, HND 4; REF
DEFINE STREAM statement, HND 9; REF
DEFINE VARIABLE statement, TUT 10, 14; REF
DEFINE WORKFILE statement, HND 10; REF
DELETE ALIAS statement, HND 13; REF

DELETE statement, TUT 4, 8; REF

Deleting
records, TUT 4

Demo database, TUT 1
default directory, TUT 13
definitions, TUT Appendix A

Designing
databases, TUT 5; HND 3; TK 7
screens, TUT 11; TK §

Developer’s Toolkit, TK

Dictionary. See Data Dictionary.
DICTIONARY statement, TUT 5; REF
DIF files, converting, HND 9

Directories
BTOS/CTOS, SA 1 4
DOS,SAT1
for application release, TK 8
UNIX, SAT2
VMS, SA 13
PROGRESS, SA1I 1

DISCONNECT statement, HND 13; REF; DG 2, 4

Disk usage, SAII 1

Display formats, TUT 5; HND 4

DISPLAY statement, TUT 4, 11, 12

Distributed multi-database configuration, HND 13
Distributed/Simultaneous multi-database configuration, HND

Distributing applications, TUT 16;
HND 14, TK 3, 8

DLC directory, TUT 13
DO statement, TUT 4, 8, 9; REF

DOS concepts, SAT1
for using the Toolkit on DOS, TK 2

DOS, customizing for PROGRESS, SA 1 2
DOS LANs, SA I 6, Appendix A

DOS memory saver (DMS), 3Gl 1

DOS protected mode, SA 1 2; 3GL 1

DOWN option, DISPLAY statement, TUT 11

Dumping a database, SA 1I 4
for distribution, TK 7

E

EDITING phrase, HND 6; REF

Editor, TUT 2
accessing, TUT 16
area, TUT 1

Embedded SQL, HND 15; 3GL 9
Empty database, TUT 1; SA II 2
ENDKEY, HND 6, 8

END-ERROR key, TUT 16; HND 8

Environment variables
BTOS/CTOS, SA 14
DOS,SA12
0S/2,SA15
UNIX, SAI1
VMS,SA 13

ERROR key, HND 8

Error messages, TUT 4

Error processing, HND 8

Example procedures, TUT 14; HND Preface; REF Introduction
EXCLUSIVE-LOCK option, Record phrase, HND 12; REF

Exiting from PROGRESS, TUT 8
from the editor, TUT 1

EXPORT statement, HND 9; REF
Expressions, TUT 10

Extended alphabet support, HND 2
Extents, SA I1 6

F

Fields, TUT 1, 5, 11; HND 3

Federated multi-database configuration, HND 13

File(s)
after-image, SAII 1, 7
before-image, HND 8; SA Il 1
BTOS/CTOS, SA 14
creating, TUT 5; HND 3
Data Dictionary definition, TUT 5; HND 3
database, SA II 1
DOS,SA 12
dumping and loading, SA II 4
freezing, HND 11
include, TUT 14
limits, SAII 1
lock control, SAII 1
log, SAII 1
maintenance, TUT 4
moving data definitions between, HND 3; SA 11 4
multi-user, SA II 1
0S/2,SA15
permissions, HND 11; SAII 5§
relationships, TUT 1, 6
UNIX, SAI1
version, TK 8
VMS,SA 13

FIND statement, TUT 4, 6, 8, 9; REF

FIRST option, FIND statement, TUT 9; HND 10; REF
Footers, TUT 12

FOR EACH statement, TUT 4, 6, 8, 9; REF

FOR option
DO statement, TUT 9; REF
REPEAT statement, TUT 8, 9; REF

FORM statement, TUT 6, 11, 12; HND 7; REF

FORMAT option
DEFINE VARIABLE statement, TUT 10; REF
DISPLAY statement, TUT 11; REF
UPDATE statement, TUT 11; REF

Format phrase, TUT 11; HND 7; REF

Formats, display, TUT 5, 11; HND 4

FRAME option, REPEAT statement, TUT 11; REF
Frame phrase, TUT 11; HND 7; REF

Frames, TUT 11; HND 7

Function keys, TUT 2, 9; HND 6

Functions,
AMBIGUOUS, TUT 10; REF
AVAILABLE, TUT 10; REF
BEGINS, TUT 9; REF
ENTRY, TUT 10; REF
in expression, TUT 10
FRAME-COLUMN, TUT 11; REF
FRAME-DOWN, TUT 11; REF
FRAME-FILE, TUT 15; REF
FRAME-LINE, TUT 11; REF
FRAME-ROW, TUT 11; REF
FRAME-FIELD, TUT 15; REF
KEYCODE, TUT 9; REF
LAST-OF, TUT 12; REF
LASTKEY, TUT 9; REF
MATCHES, TUT 9; REF
OPSYS, TUT 10; REF
PAGE-NUMBER, TUT 12; REF
ROUND, TUT 10; REF
SQRT, TUT 10; REF
STRING, TUT 10; REF
SEARCH, TUT 15; REF
statistical, TUT 10
WEEKDAY, TUT 10; REF

G

GATEWAYS function, REF
GETBYTE, REF

Global variable(s)
shared, TUT 14

GO-ON option, UPDATE statement, TUT 9

H

HEADER option, FORM statement, TUT 12; REF

Header(s)
block, TUT 4
frame, TUT 11
in reports, TUT 12

Help
for a field, TUT 5, 15; HND 3
for Multi-db applications, HND 13

HELP option, SET statement, TUT 11; REF

High Level Call Interface (HLC), 3GL 1
programming considerations, 3GL 4
general programming, 3GL 3

HIDE statement, TUT 6, 12; HND 7
Hiding frames, TUT 11; HND 7

HLC libraries, 3GL 5

Host Language Interface (HLI), 3Gl
C programming, 3GL 10
COBOL programming, 3GL 12
Pascal programming, 3GL 14

IF... THEN...ELSE statement, TUT 6, 8; REF
IMPORT statement, HND 9; REF

Improving performance, SA II 3,B

Include files, TUT 14

Indexes, TUT 1
defining, TUT S; HND 3
using for record selection, TUT 9
using for sorting records, TUT 9

Input
redirecting, TUT 15
sources, HND 9

INPUT FROM statement, TUT 15
INSERT statement, TUT 4, 8; REF
Integer data type, TUT 5

Integrity, TUT §

K

Key(s)
codes, HND 2
defining, HND 2, 6
functions, HND 6
labels, HND 2
PROGRESS editor, TUT 2
using in procedures, HND 6

KEYCODE function, HND 2, 6; REF
KEYFUNCTION function, HND 2, 6; REF
KEYLABEL function, HND 2, 6; REF
Keystrokes, monitoring, HND 6

L

Labels
for columns, TUT 5, 11
for keys, HND 2

LAST option, FIND statement, TUT 9; REF
LASTKEY function, HND 6; REF

LDBNAME function, HND 13; REF
LENGTH function, REF

LENGTH statement, REF

LIBRARY function, REF

Libraries, SA II 4

Limits, SAII 1

Loading data, SA II 4

Local-area networks (LANs), SA 1 5,6,Appendix A
Local-before-image file (.Ibi), HND 8; SA II 1
Log file (.1g), SAII 1,4

Logical database, HND 13

Logical data type, TUT 5; HND 4

Logicals, VMS. See Environment variables.
Login procedures, HND 11; TK §

Locks, record, HND 12

LOOKUP function, HND 6; REF

Looping, TUT 4; HND 5

MATCHES function, TUT 9; REF
MEMBER function, REF

Memory, shared. See Shared Memory.
Memory usage, SAII 3

Menus, TUT 6; HND 7

MESSAGE statement, TUT 6, 11; REF
Messages, TUT 4, 11; HND 1

Monitor, SA 11 Appendix B

Multi-database configuration(s)
federated, HND 13
distributed, HND 13
distributed/simultaneous, HND 13

Multi-database programming, HND 13
Multiple application processors, SA 11
Multi-threaded architecture, SA II Appendix C
Multi-user PROGRESS, HND 12

Multi-user client connection mode, HND 13

Multi-user direct access mode, HND 13

Multi-volume PROGRESS, SA Il 6

N

Named Pipes, HND Appendix A

NETBIOS, SA16

Networks, SA II 1; SA 1 5-11

NEXT option, FIND statement, TUT 9; REF

NEXT statement, TUT 8; HND 6; REF

NO-ATTR-SPACE option, Frame phrase, HND 7; REF; TK 5
NO-BOX option, Frame phrase, TUT 11; HND 7; REF
NO-ECHO option, INPUT FROM statement, TUT 15; REF
NO-ERROR option, FIND statement, TUT 8; REF
NO-HIDE option, Frame phrase, HND 7; REF

NO-LOCK option, Frame phrase, HND 12
Non-PROGRESS databases, HND 13

Normalizing data, HND 3

Null string, TUT 10, 15

Numeric calculations, TUT 10

(o)

Object (.r) file, TUT 13
OF option, FOR EACH statement, TUT 6, 9; REF
ON statement, HND 6, 8; REF

Operating system(s)
administration, SA II all
BTOS/CTOS, SA 1 4
differences between, HND 14
DOS,SA 11
facilities to backup and restore databases, SA 11 4
0S/2,SA15
security, HND 11; SAII 5§
transporting databases, TK
UNIX, SA 12
VMS,SA 13
writing applications for different, HND 14

Operators, TUT 10

OPSYS function, TUT 10; REF

0S/2,SA 15

OUTPUT CLOSE statement, TUT 6; HND 9; REF
Output destinations, HND 9

OUTPUT THROUGH statement, HND 9; REF
OUTPUT TO statement, TUT 6, 12; HND 9; REF
Overlay frame, TUT 11

OVERLAY option, Frame phrase, TUT 11; HND 7

P

PAGE-BOTTOM option, FORM statement, TUT 12; REF
PAGE-TOP option, FORM statement, TUT 12; REF
PAGED option, OUTPUT statement, HND 9; REF
Parameter files, SA II 3; HND 13

Pascal entry points, 3GL 15

Passwords, HND 11; SA 11 5; TK 5

PDBNAME function, HND 13; REF

Performance consideration, UNIX, SA T 1
Permissions, HND 11; SAII 5; TK 3,5;SA11, 3
Pipes, named, HND Appendix A

PREV option, FIND statement, TUT 9; REF
Printing, TUT 12; HND 9

Privileges, HND 11; SAII 5

PROBUILD utility, 3GL 1

PROGRESS executable, building, 3GL 1

Procedures
applhelp.p, HND 3
compiling, TUT 13
creating, TUT 4
debugging, HND 14
gateway
precompiling, TUT 13; TK 7
running, TUT 4
sample, TUT 4; HND Preface; REF Introduction
time stamp, TUT 13
using keys in, HND 6

PROGRESS
database commands, TUT 1; SA Il 1, 2
editor, TUT 2
keys, TUT 2, HND 2
leaving, TUT 1
limits, SA IT 1
multi-user, HND 12
multi-volume, SA II 6
starting, TUT 1; HND 12; SAII 2; SA 1
startup options, SA II 3
utilities, SA 11

Prolib utiltiy, SA II 4
PROMPT-FOR statement, TUT 4, 8; REF

PROPATH environment variable,
TUT 13,14;SA11,2,34

protected mode, for DOS, SA 1 2; 3GL 1
protermcap file, TUT 4; HND 2; TK 3
Programming tips, HND 14

PUTBYTE function, REF

PUT statement, TUT 12; REF

Q

Query/Run-Time PROGRESS, Data Dictionary, TUT 5
QUIT statement, TUT 8, 13; REF
Quoter, HND 9

R

RAW function, REF

RAW statement, REF

Raw Datatype, HND 13, DG 2
READKEY statement, HND 6; REF
Rebuilding indexes,

Record(s)
buffer, TUT 8, 9
defining, HND 3
limits, SA I 1
locks, HND 8, 12
phrase, HND 12; REF
retrieving, TUT 4, 9
scope, TUT 9; HND 5

Recovery, database, SA 11 4, 7

Reloading databases, SA 1I 4

Remote database, HND 13

REPEAT statement, TUT 4, 8,9

Reports, TUT 12; HND 10

Resource usage, SA 11 3,B,C

Restoring a database, SA 11 4, 7

RETAIN option, DISPLAY statement, TUT 11; HND 7; REF
Roll Forward Recovery, SA I1 7

ROUND function, TUT 10; REF

Row. See Record.
ROW option, DISPLAY statement, TUT 11; REF
RUN statement, TUT 6, 14; REF

S
Sample procedures, TUT 4;
HND Preface; REF Preface
SAVE option, COMPILE statement, TUT 13; REF
Schema, SA II 1; TK 4; DG 1, 2, 4; See also Data Dictionary
Schema holder database, HND 13; DG 1, 2, 4

Scoping
for frames, HND 5, 9
for records, TUT 8; HND 5

Screen
attributes, TUT 11; TK 5
buffer, TUT 8

SCROLL option, Frame phrase, HND 7; REF

SCROLL statement, HIND 7; REF

SDBNAME function, HND 13; REF

SEARCH function, TUT 15; HND 9; REF

Search paths, VMS, SA 1 3

Security, TUT 5; HND 11; SAII §; TK 3,5: SA 11,2, 3, 4
Servers HND 12; SA 11 2; SA11,3,4,7,8

SET statement, TUT 8, 11; REF

SETUSERID function, HND 11; REF

SHARE-LOCK option, Record phrase, HND 12; REF
Shared frames, HND 7

Shared memory, SA II Appendix C, Appendix B, SA11, 3
Shared variables, TUT 14, 15

Shutting down a database, SA II 2

SIDE-LABELS option, UPDATE statement, TUT 6; REF
Single-user connection mode, HND 13

SKIP option,
DISPLAY statement, TUT 11; REF
FORM statement, TUT 6; REF

Sorting records, TUT 9; HND 10

SPACE option, UPDATE statement, TUT 11; REF
SPX,SAT6

SQRT function, TUT 10; REF

STATUS statement, TUT 11; REF
Starting PROGRESS, TUT 1; SAI1 2; SA 1
Startup options, SA II 3

Stopping PROGRESS, SA II 2
Streams, IIND 9

STRING function, TUT 10, 12; REF
Structure file, SAII 6

Subprocedures, TUT 14
SUBSTRING function, HND 9; REF
Subtransactions, HND 8

SYLK files, converting, HND 9
System administration, SA II; SA 1
System failure, HND 8; SA 1I 4,7

T

Table. See File.

TCP/IP networks, SA 17

Terminals, definition of, HIND 2; SAI1, 3,4
Terminal support, TUT 11; HND 7, 13; TK 3, §

Testing
applications, HND 14
backups, SA 1I 4

TEXT option, UPDATE statement, TUT 11; REF
Time display formats, 1IND 4
Time stamp, TUT 13

TITLE option
DISPLAY statement, TUT 11; REF
FORM statement, TUT 6; REF

TO option, UPDATE statement, TUT 11; REF
TOP-ONLY option, Frame phrase, IIND 7; REF
TOTAL BY option, DISPLAY statement, TUT 12; REF
Totals, in reports, TUT 12; HND 10

Transactions, HHND 8, 12

Transporting applications, HND 14; TK 3, 8
Troubleshooting, SA II Appendix A

Two-way streams, UNIX, SA T 1

U

Undo processing, HND §, 8

UNDO statement, HND 8; REF

UNIX concepts, SAT 1
for using the Toolkit on UNIX, TK 2

UNIX, customizing for PROGRESS, SA 11
Unknown value, TUT 5

Unpacking sample procedures, TUT 4; HND Preface; REF Intro-
duction

UPDATE statement, TUT 4, 6, 11; REF
Upgrading applications, TK 9
User-Defined language rules, HND 2
Ulilities

database, SA Il 4, 7

Developer’s Toolkit, TK 1, 11
_User file, IND 11; SAII 5; TK §
Userids, HND 11; SAII 5; TK §

USE-INDEX option
FIND statement, TUT 9; REF
FOR EACH statement, TUT 9; REF

USING option, FIND statement, TUT 9; REF

\'

VALIDATE option, SET statement, TUT 11; REF
Validation, TUT §; HND 3

Variables, environment. See Environment Variables.
Variables, TUT 10, 11, 14

Views, 1IND 15

VIEW statement, TUT 11, 12; REF

VMS concepts, SAT 3
for using the Toolkit on VMS, TK 2

VMS, customizing for PROGRESS, SA 1 3

w

WEEKDAY function, TUT 10; REF
WIIERE option, FOR EACH statement, TUT 4, 6, 9; REF

Wildcard characters
BTOS/CTOS,SA 14
DOS,SA 11
UNIX, SA 12
VMS,SA 13

WITII option, Frame phrase, TUT 11; REF

Work files, HND 10

X

X Windows, HND 16

PROGRESS FUNCTION AND CONTROL KEYS

EDIT GO
KEYS

HELP INSERT

MODE

EXECUTION GO
KEYS

INSERT
MODE

Function
Keys

Control

Keys

RIGHT-
END

GET PUT RECALL CLEAR NEW

LINE

DELETE BREAK APPEND
LINE LINE

FIND BLOCK PAGE-
LINE up

PAGE-
DOWN

END-

RECALL CLEAR
ERROR

PROGRESS END: Type quit

pOS UNIXL_D Depends on VMS BTOS

. . . CIR . BTOS END:
DOS END: Type exit UNIX END: e IXstty VMS END: Logout D PROGRESS EXIT
STOP: CTRL-BREAK STOP: CIR settings STOP: CTRL-C STOP: ACTION-CANCEIL
ABORT: CTRL-ALT-DEL ABORT CTRL-\ ABORT: CTRL-Y,STOP | | ABORT: ACTION/

Pocket PROGRESS

